A disproportionation reaction is an oxidation-reduction reaction in which the same substance is oxidized and reduced. Complete and balance the following disproportionation reactions: (a) $\mathrm{Fe}^{2+}(a q) \longrightarrow \mathrm{Fe}(s)+\mathrm{Fe}^{3+}(a q)$ (b) $\mathrm{Br}_{2}(l) \longrightarrow \mathrm{Br}^{-}(a q)+\mathrm{BrO}_{3}^{-}(a q)$ (acidic solution) (c) $\mathrm{Cr}^{3+}(a q) \longrightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+\mathrm{Cr}(s)$ (acidic solution) (d) $\mathrm{NO}(g) \longrightarrow \mathrm{N}_{2}(g)+\mathrm{NO}_{3}^{-}(a q)$ (acidic solution)

Short Answer

Expert verified
The balanced disproportionation reactions are: (a) \( 2Fe^{2+}(aq) \longrightarrow Fe(s) + 2Fe^{3+}(aq) \). (b) \(3Br_{2}(l) + 12H^{+}(aq) \longrightarrow 6Br^{-}(aq) + 2BrO_3^{-}(aq) + 6H_{2}O(l)\). (c) \( 3Cr^{3+}(aq) + 14H^{+}(aq) \longrightarrow Cr_{2}O_{7}^{2-}(aq) + 2Cr(s) + 7H_{2}O(l)\). (d) \(6NO(g) + 6H_{2}O(l) \longrightarrow 2N_{2}(g) + 6NO_{3}^{-}(aq) + 12H^{+}(aq)\).

Step by step solution

01

Work on reaction (a)

\(Fe^{2+}(aq) \longrightarrow Fe(s) + Fe^{3+}(aq)\) First, identify the changes in oxidation numbers for the iron atoms: \( Fe^{2+}(aq)\) is reduced to \( Fe(s)\): Oxidation number decreases from +2 to 0. \( Fe^{2+}(aq)\) is oxidized to \( Fe^{3+}(aq)\): Oxidation number increases from +2 to +3. To balance the reaction, we have to make sure that the number of electrons transferred is the same during oxidation and reduction. The difference in electrons here is 1: Reduction: \( Fe^{2+}(aq) \longrightarrow Fe(s) + 1e^{-}\). Oxidation: \( Fe^{2+}(aq) \longrightarrow Fe^{3+}(aq) + 1e^{-}\). Now we can write the balanced disproportionation reaction: \( 2Fe^{2+}(aq) \longrightarrow Fe(s) + 2Fe^{3+}(aq) \).
02

Work on reaction (b)

\(Br_{2}(l) \longrightarrow Br^{-}(aq) + BrO_3^{-}(aq)\) (acidic solution) First, identify the changes in oxidation numbers for the bromine atoms: \( Br_{2}(l)\) is reduced to \( Br^{-}(aq)\): Oxidation number decreases from 0 to -1. \( Br_{2}(l)\) is oxidized to \( BrO_3^{-}(aq)\): Oxidation number increases from 0 to +5. To balance the reaction: Reduction: \( Br_{2}(l) \rightarrow 2Br^{-}(aq) + 2e^{-} \). Oxidation: \( Br_{2}(l) + 10e^{-} \rightarrow 2BrO{_3}^{-}(aq) + 12H^{+}(aq) \) (Considering the acidic solution). To balance the electrons, we must multiply the reduction half-reaction by 5: \(5 (Br_{2}(l) \rightarrow 2Br^{-}(aq) + 2e^{-})\). Now, we can write the balanced disproportionation reaction in acidic solution: \(3Br_{2}(l) + 12H^{+}(aq) \longrightarrow 6Br^{-}(aq) + 2BrO_3^{-}(aq) + 6H_{2}O(l)\).
03

Work on reaction (c)

\(Cr^{3+}(aq) \longrightarrow Cr_{2}O_{7}^{2-}(aq) + Cr(s)\) (acidic solution) First, identify the changes in oxidation numbers for the chromium atoms: \( Cr^{3+}(aq)\) is reduced to \( Cr(s)\): Oxidation number decreases from +3 to 0. \( Cr^{3+}(aq)\) is oxidized to \( Cr_{2}O_{7}^{2-}(aq)\): Oxidation number increases from +3 to +6. To balance the reaction: Reduction: \(2Cr^{3+}(aq) + 6e^{-} \rightarrow 2Cr(s)\). Oxidation: \(2Cr^{3+}(aq) \rightarrow Cr_{2}O_{7}^{2-}(aq) + 6e^{-} + 14H^{+}(aq)\) (Considering the acidic solution). Now we can write the balanced disproportionation reaction in acidic solution: \( 3Cr^{3+}(aq) + 14H^{+}(aq) \longrightarrow Cr_{2}O_{7}^{2-}(aq) + 2Cr(s) + 7H_{2}O(l)\).
04

Work on reaction (d)

\(NO(g) \longrightarrow N_{2}(g) + NO_{3}^{-}(aq)\) (acidic solution) First, identify the changes in oxidation numbers for the nitrogen atoms: \( NO(g)\) is reduced to \( N_{2}(g)\): Oxidation number decreases from +2 to 0. \( NO(g)\) is oxidized to \( NO_{3}^{-}(aq)\): Oxidation number increases from +2 to +5. To balance the reaction: Reduction: \(2NO(g) + 2e^{-} \rightarrow N_{2}(g)\). Oxidation: \(4NO(g) + 6H_2O(l) \rightarrow 4NO_{3}^{-}(aq) + 12H^{+}(aq) + 6e^{-}\) (Considering the acidic solution). To balance the electrons, we must multiply the reduction half-reaction by 3: \(3 (2NO(g) + 2e^{-} \rightarrow N_{2}(g))\). Now, we can write the balanced disproportionation reaction in acidic solution: \(6NO(g) + 6H_{2}O(l) \longrightarrow 2N_{2}(g) + 6NO_{3}^{-}(aq) + 12H^{+}(aq)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The standard reduction potentials of the following half-reactions are given in Appendix E: $$ \begin{array}{l} \mathrm{Fe}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}(s) \\ \mathrm{Cd}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \operatorname{Cd}(s) \\\ \mathrm{Sn}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \operatorname{Sn}(s) \\\ \mathrm{Ag}^{+}(a q)+\mathrm{e}^{-} \longrightarrow \operatorname{Ag}(s) \end{array} $$ (a) Determine which combination of these half-cell reactions leads to the cell reaction with the largest positive cell potential and calculate the value. (b) Determine which combination of these half-cell reactions leads to the cell reaction with the smallest positive cell potential and calculate the value.

If the equilibrium constant for a two-electron redox reaction at $298 \mathrm{~K}\( is \)2.2 \times 10^{5},\( calculate the corresponding \)\Delta G^{\circ}\( and \)E^{\circ}$.

A voltaic cell is constructed with two silver-silver chloride electrodes, each of which is based on the following half-reaction: $$ \operatorname{AgCl}(s)+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(s)+\mathrm{Cl}^{-}(a q) $$ The two half-cells have \(\left[\mathrm{Cl}^{-}\right]=0.0150 \mathrm{M}\) and \(\left[\mathrm{Cl}^{-}\right]=\) \(2.55 M,\) respectively. (a) Which electrode is the cathode of the cell? (b) What is the standard emf of the cell? (c) What is the cell emf for the concentrations given? (d) For each electrode, predict whether \(\left[\mathrm{Cl}^{-}\right]\) will increase, decrease, or stay the same as the cell operates.

Indicate whether the following balanced equations involve oxidation-reduction. If they do, identify the elements that undergo changes in oxidation number. (a) $2 \mathrm{AgNO}_{3}(a q)+\mathrm{CoCl}_{2}(a q) \longrightarrow 2 \mathrm{AgCl}(s)+ \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}(a q)$ (b) $2 \mathrm{PbO}_{2}(s) \longrightarrow 2 \mathrm{PbO}(s)+\mathrm{O}_{2}(g)$ (c) $2 \mathrm{H}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{NaBr}(s) \longrightarrow \mathrm{Br}_{2}(l)+\mathrm{SO}_{2}(g)+ \mathrm{Na}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)$

A voltaic cell is constructed that uses the following reaction and operates at \(298 \mathrm{~K}\) : $$ \mathrm{Zn}(s)+\mathrm{Ni}^{2+}(a q) \longrightarrow \mathrm{Zn}^{2+}(a q)+\mathrm{Ni}(s) $$ (a) What is the emf of this cell under standard conditions? (b) What is the emf of this cell when $\left[\mathrm{Ni}^{2+}\right]=3.00 \mathrm{M}\( and \)\left[\mathrm{Zn}^{2+}\right]=0.100 \mathrm{M} ?(\mathbf{c})$ What is the emf of the cell when \(\left[\mathrm{Ni}^{2+}\right]=0.200 M\) and \(\left[\mathrm{Zn}^{2+}\right]=0.900 \mathrm{M} ?\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free