What is the anhydride for each of the following acids: (a) $\mathrm{H}_{2} \mathrm{SO}_{4},(\mathbf{b}) \mathrm{HClO}_{3},(\mathbf{c}) \mathrm{HNO}_{2},\( (d) \)\mathrm{H}_{2} \mathrm{CO}_{3},(\mathbf{e}) \mathrm{H}_{3} \mathrm{PO}_{4} ?$

Short Answer

Expert verified
The anhydrides for the given acids are: (a) \(\mathrm{H}_{2} \mathrm{SO}_{4}: \mathrm{H}_{2}\mathrm{S}_{2}\mathrm{O}_{7}\) (b) \(\mathrm{HClO}_{3}: \mathrm{Cl}_{2}\mathrm{O}_{6}\) (c) \(\mathrm{HNO}_{2}: \mathrm{N}_{2}\mathrm{O}_{3}\) (d) \(\mathrm{H}_{2} \mathrm{CO}_{3}:\) No stable anhydride (e) \(\mathrm{H}_{3} \mathrm{PO}_{4}: \mathrm{H}_{4}\mathrm{P}_{2}\mathrm{O}_{7}\)

Step by step solution

01

Understand the process of forming anhydrides

To form an anhydride from an acid, you need to remove one water molecule (H2O) from two molecules of the acid and then combine the remaining elements together. This will yield the corresponding anhydride.
02

Find the anhydride for \(\mathrm{H}_{2} \mathrm{SO}_{4}\)

Remove one water molecule (H2O) from two molecules of \(\mathrm{H}_{2} \mathrm{SO}_{4}\): \(\mathrm{2H}_{2} \mathrm{SO}_{4} - \mathrm{H}_{2}\mathrm{O}\) Combine the remaining elements to get the anhydride: \(\mathrm{H}_{2}\mathrm{S}_{2}\mathrm{O}_{7}\) The anhydride for \(\mathrm{H}_{2} \mathrm{SO}_{4}\) is \(\mathrm{H}_{2}\mathrm{S}_{2}\mathrm{O}_{7}\).
03

Find the anhydride for \(\mathrm{HClO}_{3}\)

Remove one water molecule (H2O) from two molecules of \(\mathrm{HClO}_{3}\): \(\mathrm{2HClO}_{3} - \mathrm{H}_{2}\mathrm{O}\) Combine the remaining elements to get the anhydride: \(\mathrm{Cl}_{2}\mathrm{O}_{6}\) The anhydride for \(\mathrm{HClO}_{3}\) is \(\mathrm{Cl}_{2}\mathrm{O}_{6}\).
04

Find the anhydride for \(\mathrm{HNO}_{2}\)

Remove one water molecule (H2O) from two molecules of \(\mathrm{HNO}_{2}\): \(\mathrm{2HNO}_{2} - \mathrm{H}_{2}\mathrm{O}\) Combine the remaining elements to get the anhydride: \(\mathrm{N}_{2}\mathrm{O}_{3}\) The anhydride for \(\mathrm{HNO}_{2}\) is \(\mathrm{N}_{2}\mathrm{O}_{3}\).
05

Find the anhydride for \(\mathrm{H}_{2} \mathrm{CO}_{3}\)

\(\mathrm{H}_{2}\mathrm{CO}_{3}\) doesn't produce a stable anhydride. When you try to remove a water molecule from two molecules of \(\mathrm{H}_{2}\mathrm{CO}_{3}\), it will simply decompose into water and carbon dioxide.
06

Find the anhydride for \(\mathrm{H}_{3} \mathrm{PO}_{4}\)

Remove one water molecule (H2O) from two molecules of \(\mathrm{H}_{3} \mathrm{PO}_{4}\): \(\mathrm{2H}_{3} \mathrm{PO}_{4} - \mathrm{H}_{2}\mathrm{O}\) Combine the remaining elements to get the anhydride: \(\mathrm{H}_{4}\mathrm{P}_{2}\mathrm{O}_{7}\) The anhydride for \(\mathrm{H}_{3} \mathrm{PO}_{4}\) is \(\mathrm{H}_{4}\mathrm{P}_{2}\mathrm{O}_{7}\). To summarize, the anhydrides for the given acids are as follows: (a) \(\mathrm{H}_{2} \mathrm{SO}_{4}: \mathrm{H}_{2}\mathrm{S}_{2}\mathrm{O}_{7}\) (b) \(\mathrm{HClO}_{3}: \mathrm{Cl}_{2}\mathrm{O}_{6}\) (c) \(\mathrm{HNO}_{2}: \mathrm{N}_{2}\mathrm{O}_{3}\) (d) \(\mathrm{H}_{2} \mathrm{CO}_{3}:\) No stable anhydride (e) \(\mathrm{H}_{3} \mathrm{PO}_{4}: \mathrm{H}_{4}\mathrm{P}_{2}\mathrm{O}_{7}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Write balanced equations for each of the following reactions (some of these are analogous to reactions shown in the chapter). (a) Aluminum metal reacts with acids to form hydrogen gas. (b) Steam reacts with magnesium metal to give magnesium oxide and hydrogen. (c) Manganese(IV) oxide is reduced to manganese(II) oxide by hydrogen gas. (d) Calcium hydride reacts with water to generate hydrogen gas.

Ultrapure germanium, like silicon, is used in semiconductors. Germanium of "ordinary" purity is prepared by the high-temperature reduction of \(\mathrm{GeO}_{2}\) with carbon. The Ge is converted to \(\mathrm{GeCl}_{4}\) by treatment with \(\mathrm{Cl}_{2}\) and then purified by distillation; \(\mathrm{GeCl}_{4}\) is then hydrolyzed in water to \(\mathrm{GeO}_{2}\) and reduced to the elemental form with \(\mathrm{H}_{2}\). The element is then zone refined. Write a balanced chemical equation for each of the chemical transformations in the course of forming ultrapure Ge from \(\mathrm{GeO}_{2}\).

The maximum allowable concentration of \(\mathrm{H}_{2} \mathrm{~S}(g)\) in air is \(20 \mathrm{mg}\) per kilogram of air ( 20 ppm by mass). How many grams of FeS would be required to react with hydrochloric acid to produce this concentration at \(101.3 \mathrm{kPa}\) and \(25^{\circ} \mathrm{C}\) in an average room measuring $3.5 \mathrm{~m} \times 6.0 \mathrm{~m} \times 2.5 \mathrm{~m} ?\( (Under these conditions, the average molar mass of air is \)29.0 \mathrm{~g} / \mathrm{mol} .)$

The \(\mathrm{SF}_{5}^{-}\) ion is formed when \(\mathrm{SF}_{4}(g)\) reacts with fluoride salts containing large cations, such as \(\mathrm{CsF}(s)\). Draw the Lewis structures for \(\mathrm{SF}_{4}\) and \(\mathrm{SF}_{5}^{-}\), and predict the molecular structure of each.

Complete and balance the following equations: (a) \(\mathrm{ZnCO}_{3}(s) \stackrel{\Delta}{\longrightarrow}\) (b) \(\mathrm{BaC}_{2}(s)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow\) (c) \(\mathrm{C}_{2} \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow\) (d) \(\mathrm{CS}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow\) (e) \(\mathrm{Ca}(\mathrm{CN})_{2}(s)+\operatorname{HBr}(a q) \longrightarrow\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free