Chapter 14: Problem 65
We have used the terms order of a reaction and molecularity of an elementary process (that is, unimolecular, bimolecular). What is the relationship, if any, between these two terms?
Chapter 14: Problem 65
We have used the terms order of a reaction and molecularity of an elementary process (that is, unimolecular, bimolecular). What is the relationship, if any, between these two terms?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe decomposition of dimethyl ether at \(504^{\circ} \mathrm{C}\) is $$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{CH}_{4}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$$ The following data are partial pressures of dimethyl ether (DME) as a function of time: \(t=0\) s, \(P_{\text {DME }}=\) \(312 \mathrm{mmHg} ; 390 \mathrm{s}, 264 \mathrm{mmHg} ; 777 \mathrm{s}, 224 \mathrm{mmHg} ; 1195 \mathrm{s},187 \mathrm{mmHg} ; 3155 \mathrm{s}, 78.5 \mathrm{mmHg}.\) (a) Show that the reaction is first order. (b) What is the value of the rate constant, \(k ?\) (c) What is the total gas pressure at 390 s? (d) What is the total gas pressure when the reaction has gone to completion? (e) What is the total gas pressure at \(t=1000\) s?
For the reaction \(A \longrightarrow\) products, the following data give \([\mathrm{A}]\) as a function of time \(t=0 \mathrm{s},[\mathrm{A}]=0.600 \mathrm{M};100 \mathrm{s}, 0.497 \mathrm{M} ; 200 \mathrm{s}, 0.413 \mathrm{M} ; 300 \mathrm{s}, 0.344 \mathrm{M} ; 400 \mathrm{s}\) \(0.285 \mathrm{M} ; 600 \mathrm{s}, 0.198 \mathrm{M} ; 1000 \mathrm{s}, 0.094 \mathrm{M}.\) (a) Show that the reaction is first order. (b) What is the value of the rate constant, \(k ?\) (c) What is \([\mathrm{A}]\) at \(t=750 \mathrm{s} ?\)
Three different sets of data of \([\mathrm{A}]\) versus time are giv the following table for the reaction \(A \longrightarrow\) prod [Hint: There are several ways of arriving at answer each of the following six questions. $$\begin{array}{cccccc} \hline \text { I } & & \text { II } & & \text { III } & \\ \hline \begin{array}{c} \text { Time, } \\ \text { s } \end{array} & \text { [A], M } & \begin{array}{c} \text { Time, } \\ \text { s } \end{array} & \text { [A], M } & \begin{array}{c} \text { Time, } \\ \text { s } \end{array} & \text { [A], M } \\ \hline 0 & 1.00 & 0 & 1.00 & 0 & 1.00 \\ 25 & 0.78 & 25 & 0.75 & 25 & 0.80 \\ 50 & 0.61 & 50 & 0.50 & 50 & 0.67 \\ 75 & 0.47 & 75 & 0.25 & 75 & 0.57 \\ 100 & 0.37 & 100 & 0.00 & 100 & 0.50 \\ 150 & 0.22 & & & 150 & 0.40 \\ 200 & 0.14 & & & 200 & 0.33 \\ 250 & 0.08 & & & 250 & 0.29 \\ \hline \end{array}$$ What is the approximate half-life of the first-order reaction?
The decomposition of nitric oxide occurs through two parallel reactions: $$\mathrm{NO}(\mathrm{g}) \longrightarrow \frac{1}{2} \mathrm{N}_{2}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \quad k_{1}=25.7 \mathrm{s}^{-1}$$ $$\mathrm{NO}(\mathrm{g}) \longrightarrow \frac{1}{2} \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\frac{1}{4} \mathrm{O}_{2}(\mathrm{g}) \quad k_{2}=18.2 \mathrm{s}^{-1}$$ (a) What is the reaction order for these reactions? (b) Which reaction is the slow reaction? (c) If the initial concentration of \(\mathrm{NO}(\mathrm{g})\) is \(2.0 \mathrm{M},\) what is the concentration of \(\mathrm{N}_{2}(\mathrm{g})\) after 0.1 seconds? (d) If the initial concentration of \(\mathrm{NO}(\mathrm{g})\) is \(4.0 \mathrm{M},\) what is the concentration of \(\mathrm{N}_{2} \mathrm{O}(\mathrm{g})\) after 0.025 seconds?
The decomposition of ethylene oxide at \(690 \mathrm{K}\) is monitored by measuring the total gas pressure as a function of time. The data obtained are \(t=10 \mathrm{min}, P_{\text {tot }}= 139.14 \mathrm{mmHg} ; 20 \mathrm{min}, 151.67 \mathrm{mmHg} ; 40 \mathrm{min}, 172.65 \mathrm{mmHg} ; 60 \mathrm{min}, 189.15 \mathrm{mmHg} ;\) \(100 \mathrm{min}, 212.34\) \(\mathrm{mmHg} ; 200 \mathrm{min}, 238.66 \mathrm{mmHg} ; \infty, 249.88 \mathrm{mmHg}\) What is the order of the reaction \(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{CH}_{4}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.