In the Ostwald process for oxidizing ammonia, a variety of products is
possible- \(\mathrm{N}_{2}, \mathrm{N}_{2} \mathrm{O}, \mathrm{NO},\) and
\(\mathrm{NO}_{2}-\)
depending on the conditions. One possibility is
$$\begin{aligned}
\mathrm{NH}_{3}(\mathrm{g})+\frac{5}{4} \mathrm{O}_{2}(\mathrm{g})
\rightleftharpoons \mathrm{NO}(\mathrm{g}) &+\frac{3}{2} \mathrm{H}_{2}
\mathrm{O}(\mathrm{g}) \\
K_{\mathrm{p}} &=2.11 \times 10^{19} \mathrm{at} 700 \mathrm{K}
\end{aligned}$$
For the decomposition of \(\mathrm{NO}_{2}\) at \(700 \mathrm{K}\)
$$\mathrm{NO}_{2}(\mathrm{g}) \rightleftharpoons
\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \quad
K_{\mathrm{p}}=0.524$$
(a) Write a chemical equation for the oxidation of
\(\mathrm{NH}_{3}(\mathrm{g})\) to \(\mathrm{NO}_{2}(\mathrm{g})\)
(b) Determine \(K_{\mathrm{p}}\) for the chemical equation you have written.