Determine \(K_{c}\) for the reaction \(\mathrm{N}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g})+\) \(\mathrm{Cl}_{2}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{g}),\) given the following data at \(298 \mathrm{K}\) $$\frac{1}{2} \mathrm{N}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{g}) \quad K_{\mathrm{p}}=1.0 \times 10^{-9}$$ $$\operatorname{NOCl}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}) \quad K_{\mathrm{p}}=1.1 \times 10^{2}$$ $$\mathrm{NO}_{2}(\mathrm{g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}) \quad K_{\mathrm{p}}=0.3$$

Short Answer

Expert verified
The equilibrium constant \(K_{c}\) for the given reaction is 6 \times 10^6

Step by step solution

01

Analyze the given reactions and required combined reaction

Observe the reactions, the goal is to combine them in a way that the resulting reaction matches the original reaction given. Mostly this process involves reversing some reactions and/or multiplying them by some factor such that the final combined reaction gets the same as the initial one.
02

Combine reactions

By reversing the first reaction and keeping the second one as it is, and adding half of the third reaction, the result is the original reaction:\n \(-1/2(1/2 \mathrm{N}_{2} + \mathrm{O}_{2} \rightarrow \mathrm{NO}_{2})\),\n \(+1(\mathrm{NOCl} + 1/2 \mathrm{O}_{2} \rightarrow \mathrm{NO}_{2} \mathrm{Cl})\),\n \(+1/2(\mathrm{NO}_{2} + 1/2 \mathrm{Cl}_{2} \rightarrow \mathrm{NO}_{2}\mathrm{Cl}),\),\n This forms our desired equation: \(\mathrm{N}_{2} + \mathrm{O}_{2} + \mathrm{Cl}_{2} \rightarrow 2\mathrm{NOCl}\)
03

Calculate new equilibrium constants

The equilibrium constant for the reverse of a reaction is the inverse of the original reaction, and when a reaction is multiplied by a factor n, its equilibrium constant is raised to the nth power. Thus, the new equilibrium constants are: \n \(-1/2(\mathrm{K}_{\mathrm{p1}'}= \frac{1}{(K_{p1}^{1/2})}) = \frac{1}{(1.0 \times 10^{-9})^{1/2}} = 10^9^{1/2} = 10^{4.5}\) \n \(+1(K_{p2}= 1.1 \times 10^{2}) = 1.1 \times 10^{2}\), \n \(+1/2(K_{p3'} = (0.3)^{1/2}) = (0.3)^{1/2} = 0.548\)
04

Multiply the equilibrium constants

When reactions are added together, their equilibrium constants multiply. Thus, the equilibrium constant for the original reaction is \(K_{c} = K_{\mathrm{p1}'} \times K_{p2} \times K_{p3'} = 10^{4.5} \times 1.1 \times 10^{2} \times 0.548 = 6 \times 10^{6}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A sample of \(\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})\) is placed in a \(2.58 \mathrm{L}\) flask containing 0.100 mol \(\mathrm{NH}_{3}(\mathrm{g}) .\) What will be the total gas pressure when equilibrium is established at \(25^{\circ} \mathrm{C} ?\) $$\begin{aligned} \mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{g})+\mathrm{H}_{2} \mathrm{S}(\mathrm{g}) & \\ K_{\mathrm{p}} &=0.108 \text { at } 25^{\circ} \mathrm{C} \end{aligned}$$

For the reaction \(\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{g})+\) \(\mathrm{H}_{2}(\mathrm{g}), K_{\mathrm{p}}=23.2\) at \(600 \mathrm{K} .\) Explain which of the fol- lowing situations might equilibrium: (a) \(\quad P_{\mathrm{CO}}=P_{\mathrm{H}_{2} \mathrm{O}}=P_{\mathrm{CO}_{2}}=P_{\mathrm{H}_{2}} ; \quad\) (b) \(\quad P_{\mathrm{H}_{2}} / P_{\mathrm{H}_{2} \mathrm{O}}=\) \(P_{\mathrm{CO}_{2}} / P_{\mathrm{CO}} ; \quad(\mathrm{c}) \quad\left(P_{\mathrm{CO}_{2}}\right)\left(P_{\mathrm{H}_{2}}\right)=\left(P_{\mathrm{CO}}\right)\left(P_{\mathrm{H}_{2} \mathrm{O}}^{2}\right)\) (d) \(P_{\mathrm{CO}_{2}} / P_{\mathrm{H}_{2} \mathrm{O}}=P_{\mathrm{H}_{2}} / P_{\mathrm{CO}}\)

Write equilibrium constant expressions, \(K_{\mathrm{c}},\) for the reactions (a) \(2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{g})\) (b) \(\mathrm{Zn}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})\) (c) \(\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{s})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightleftharpoons\) \(\mathrm{MgCO}_{3}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq})\)

For the dissociation reaction \(2 \mathrm{H}_{2} \mathrm{S}(\mathrm{g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{g})+\) \(\mathrm{S}_{2}(\mathrm{g}), K_{\mathrm{p}}=1.2 \times 10^{-2}\) at \(1065^{\circ} \mathrm{C} .\) For this same reaction at \(1000 \mathrm{K},\) (a) \(K_{\mathrm{c}}\) is less than \(K_{\mathrm{p}} ;\) (b) \(K_{\mathrm{c}}\) is greater than \(K_{\mathrm{p}} ;(\mathrm{c}) K_{\mathrm{c}}=K_{\mathrm{p}} ;\) (d) whether \(K_{\mathrm{c}}\) is less than, equal to, or greater than \(K_{\mathrm{p}}\) depends on the total gas pressure.

What is the apparent molar mass of the gaseous mixture that results when \(\mathrm{COCl}_{2}(\mathrm{g})\) is allowed to dissociate at \(395^{\circ} \mathrm{C}\) and a total pressure of 3.00 atm? $$\begin{aligned} \operatorname{COCl}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+& \mathrm{Cl}_{2}(\mathrm{g}) \\ & K_{\mathrm{p}}=4.44 \times 10^{-2} \mathrm{at} 395^{\circ} \mathrm{C} \end{aligned}$$ Think of the apparent molar mass as the molar mass of a hypothetical single gas that is equivalent to the gaseous mixture.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free