In the Ostwald process for oxidizing ammonia, a variety of products is possible- \(\mathrm{N}_{2}, \mathrm{N}_{2} \mathrm{O}, \mathrm{NO},\) and \(\mathrm{NO}_{2}-\) depending on the conditions. One possibility is $$\begin{aligned} \mathrm{NH}_{3}(\mathrm{g})+\frac{5}{4} \mathrm{O}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{NO}(\mathrm{g}) &+\frac{3}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \\ K_{\mathrm{p}} &=2.11 \times 10^{19} \mathrm{at} 700 \mathrm{K} \end{aligned}$$ For the decomposition of \(\mathrm{NO}_{2}\) at \(700 \mathrm{K}\) $$\mathrm{NO}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \quad K_{\mathrm{p}}=0.524$$ (a) Write a chemical equation for the oxidation of \(\mathrm{NH}_{3}(\mathrm{g})\) to \(\mathrm{NO}_{2}(\mathrm{g})\) (b) Determine \(K_{\mathrm{p}}\) for the chemical equation you have written.

Short Answer

Expert verified
The oxidation of \(\mathrm{NH}_{3}(\mathrm{g})\) to \(\mathrm{NO}_{2}(\mathrm{g})\) is given by the equation \[\mathrm{NH}_{3}(\mathrm{g})+\frac{3}{4} \mathrm{O}_{2}(\mathrm{g}) \rightarrow \mathrm{NO}_{2}(\mathrm{g}) +\frac{3}{2} \mathrm{H}_{2}\mathrm{O}(\mathrm{g})\] The equilibrium constant \(K_{\mathrm{p}}\) for this chemical equation is approximately \(4.03 \times 10^{19}\)

Step by step solution

01

Write the chemical equation

To write the chemical equation for the oxidation of \(\mathrm{NH}_{3}(\mathrm{g})\) to \(\mathrm{NO}_{2}(\mathrm{g})\), we need to combine the provided reactions in such a way that the intermediate compounds cancel out. This could be done by: \[\mathrm{NH}_{3}(\mathrm{g})+\frac{5}{4} \mathrm{O}_{2}(\mathrm{g}) \rightarrow \mathrm{NO}(\mathrm{g}) +\frac{3}{2} \mathrm{H}_{2}\mathrm{O}(\mathrm{g})\] and \[\mathrm{NO}_{2}(\mathrm{g}) \rightarrow \mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g})\] Using the subtraction rule, overdraft the reaction that leads to \(\mathrm{NH}_{3}(\mathrm{g})\) oxidation to \(\mathrm{NO}_{2}(\mathrm{g})\). This gives: \[\mathrm{NH}_{3}(\mathrm{g})+\frac{3}{4} \mathrm{O}_{2}(\mathrm{g}) \rightarrow \mathrm{NO}_{2}(\mathrm{g}) +\frac{3}{2} \mathrm{H}_{2}\mathrm{O}(\mathrm{g})\]
02

Determine the composite \(K_{\mathrm{p}}\)

In order to find \(K_{\mathrm{p}}\) for the new reaction, we multiply the \(K_{\mathrm{p}}\) of the original reactions, taking into account that the reverse reaction has an inverse \(K_{\mathrm{p}}\). From the given data, \(K_{\mathrm{p1}}=2.11 \times 10^{19}\) and \(K_{\mathrm{p2}}=0.524\). The \(K_{\mathrm{p2}}\) corresponds to the reverse reaction for the reaction needed, so we take its inverse. The new \(K_{\mathrm{p}}\) would be: \[K_{\mathrm{p(new)}} = K_{\mathrm{p1}} / K_{\mathrm{p2}}\] Substituting the given equilibrium constants we get: \[K_{\mathrm{p(new)}} = 2.11 \times 10^{19} / 0.524 = 4.03 \times 10^{19}\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Recall the formation of methanol from synthesis gas, the reversible reaction at the heart of a process with great potential for the future production of automotive fuels (page 663 ). $$\begin{aligned} \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) & \\ K_{\mathrm{c}}=& 14.5 \mathrm{at} 483 \mathrm{K} \end{aligned}$$ A particular synthesis gas consisting of 35.0 mole percent \(\mathrm{CO}(g)\) and 65.0 mole percent \(\mathrm{H}_{2}(\mathrm{g})\) at a total pressure of 100.0 atm at \(483 \mathrm{K}\) is allowed to come to equilibrium. Determine the partial pressure of \(\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})\) in the equilibrium mixture.

Can a mixture of \(2.2 \mathrm{mol} \mathrm{O}_{2}, 3.6 \mathrm{mol} \mathrm{SO}_{2},\) and \(1.8 \mathrm{mol}\) \(\mathrm{SO}_{3}\) be maintained indefinitely in a \(7.2 \mathrm{L}\) flask at a temperature at which \(K_{\mathrm{c}}=100\) in this reaction? Explain. $$ 2 \mathrm{SO}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{g}) $$

For the reaction \(\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{g})+\) \(\mathrm{H}_{2}(\mathrm{g}), K_{\mathrm{p}}=23.2\) at \(600 \mathrm{K} .\) Explain which of the fol- lowing situations might equilibrium: (a) \(\quad P_{\mathrm{CO}}=P_{\mathrm{H}_{2} \mathrm{O}}=P_{\mathrm{CO}_{2}}=P_{\mathrm{H}_{2}} ; \quad\) (b) \(\quad P_{\mathrm{H}_{2}} / P_{\mathrm{H}_{2} \mathrm{O}}=\) \(P_{\mathrm{CO}_{2}} / P_{\mathrm{CO}} ; \quad(\mathrm{c}) \quad\left(P_{\mathrm{CO}_{2}}\right)\left(P_{\mathrm{H}_{2}}\right)=\left(P_{\mathrm{CO}}\right)\left(P_{\mathrm{H}_{2} \mathrm{O}}^{2}\right)\) (d) \(P_{\mathrm{CO}_{2}} / P_{\mathrm{H}_{2} \mathrm{O}}=P_{\mathrm{H}_{2}} / P_{\mathrm{CO}}\)

What is the apparent molar mass of the gaseous mixture that results when \(\mathrm{COCl}_{2}(\mathrm{g})\) is allowed to dissociate at \(395^{\circ} \mathrm{C}\) and a total pressure of 3.00 atm? $$\begin{aligned} \operatorname{COCl}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+& \mathrm{Cl}_{2}(\mathrm{g}) \\ & K_{\mathrm{p}}=4.44 \times 10^{-2} \mathrm{at} 395^{\circ} \mathrm{C} \end{aligned}$$ Think of the apparent molar mass as the molar mass of a hypothetical single gas that is equivalent to the gaseous mixture.

Given the equilibrium constant values $$\begin{aligned} \mathrm{N}_{2}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) & \rightleftharpoons \mathrm{N}_{2} \mathrm{O}(\mathrm{g}) \quad K_{\mathrm{c}}=2.7 \times 10^{-18} \\ \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{g}) & \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{g}) K_{\mathrm{c}}=4.6 \times 10^{-3} \\ \frac{1}{2} \mathrm{N}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) & \rightleftharpoons \mathrm{NO}_{2}(\mathrm{g}) \quad K_{\mathrm{c}}=4.1 \times 10^{-9} \end{aligned}$$ Determine a value of \(K_{\mathrm{c}}\) for the reaction $$ 2 \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{O}_{2}(\mathrm{g}) \rightleftharpoons 2 \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{g}) $$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free