Write equilibrium constant expressions, \(K_{\mathrm{p}},\) for the reactions (a) \(\mathrm{CS}_{2}(\mathrm{g})+4 \mathrm{H}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{S}(\mathrm{g})\) (b) \(\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons 2 \mathrm{Ag}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g})\) (c) \(2 \mathrm{NaHCO}_{3}(\mathrm{s}) \rightleftharpoons\) \(\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\)

Short Answer

Expert verified
The equilibrium constant expressions for the given reactions are: \n(a) \(K_{\mathrm{p}} = \frac{(P_{CH4}) \cdot (P_{H2S})^2}{(P_{CS2}) \cdot (P_{H2})^4}\) \n(b) \(K_{\mathrm{p}}=(P_{O2})^{1/2}\) \n(c) \(K_{\mathrm{p}}=(P_{CO2}) \cdot (P_{H2O})\)

Step by step solution

01

Writing the equilibrium constant for reaction (a).

The reaction is: \(\mathrm{CS}_{2}(\mathrm{g})+4 \mathrm{H}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{g})+2 \mathrm{H}_{2}\mathrm{S}(\mathrm{g})\). Apply the formula for \(K_{\mathrm{p}}\): \(K_{\mathrm{p}} = \frac{(P_{CH4})^1 \cdot (P_{H2S})^2}{(P_{CS2})^1 \cdot (P_{H2})^4}\)
02

Writing the equilibrium constant for reaction (b).

The reaction is: \(\mathrm{Ag}_{2}\mathrm{O}(\mathrm{s}) \rightleftharpoons 2\mathrm{Ag}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g})\). Notice that solids are omitted. Thus, \(K_{\mathrm{p}}\) expression is: \(K_{\mathrm{p}}=(P_{O2})^{1/2}\)
03

Writing the equilibrium constant for reaction (c).

The reaction is: \(2\mathrm{NaHCO}_{3}(\mathrm{s}) \rightleftharpoons\mathrm{Na}_{2}\mathrm{CO}_{3}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{g})+\mathrm{H}_{2}\mathrm{O}(\mathrm{g})\). Notice how we can omit the substances that are solid. Thus, \(K_{\mathrm{p}}\) expression is: \(K_{\mathrm{p}}=(P_{CO2})^1 \cdot (P_{H2O})^1\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For the reaction \(2 \mathrm{NO}_{2}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g})\) \(K_{\mathrm{c}}=1.8 \times 10^{-6}\) at \(184^{\circ} \mathrm{C} . \mathrm{At} 184^{\circ} \mathrm{C},\) the value of \(K_{\mathrm{c}}\) for the reaction \(\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{g})\) is (a) \(0.9 \times 10^{6}\) (b) \(7.5 \times 10^{2}\) (c) \(5.6 \times 10^{5}\) (d) \(2.8 \times 10^{5}\)

For which of the following reactions would you expect the extent of the forward reaction to increase with increasing temperatures? Explain. (a) \(\quad \mathrm{NO}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{N}_{2}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \quad \Delta H^{\circ}=-90.2 \mathrm{kJ}\) (b) \(\quad \mathrm{SO}_{3}(\mathrm{g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \quad \Delta H^{\circ}=+98.9 \mathrm{kJ}\) (c) \(\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{g}) \quad \Delta H^{\circ}=-95.4 \mathrm{kJ}\) (d) \(\mathrm{COCl}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{g}) \quad \Delta H^{\circ}=+108.3 \mathrm{kJ}\)

In the Ostwald process for oxidizing ammonia, a variety of products is possible- \(\mathrm{N}_{2}, \mathrm{N}_{2} \mathrm{O}, \mathrm{NO},\) and \(\mathrm{NO}_{2}-\) depending on the conditions. One possibility is $$\begin{aligned} \mathrm{NH}_{3}(\mathrm{g})+\frac{5}{4} \mathrm{O}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{NO}(\mathrm{g}) &+\frac{3}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \\ K_{\mathrm{p}} &=2.11 \times 10^{19} \mathrm{at} 700 \mathrm{K} \end{aligned}$$ For the decomposition of \(\mathrm{NO}_{2}\) at \(700 \mathrm{K}\) $$\mathrm{NO}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \quad K_{\mathrm{p}}=0.524$$ (a) Write a chemical equation for the oxidation of \(\mathrm{NH}_{3}(\mathrm{g})\) to \(\mathrm{NO}_{2}(\mathrm{g})\) (b) Determine \(K_{\mathrm{p}}\) for the chemical equation you have written.

The volume of the reaction vessel containing an equilibrium mixture in the reaction \(\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{g}) \rightleftharpoons\) \(\mathrm{SO}_{2}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{g})\) is increased. When equilibrium is re-established, (a) the amount of \(\mathrm{Cl}_{2}\) will have increased; (b) the amount of \(\mathrm{SO}_{2}\) will have decreased; (c) the amounts of \(\mathrm{SO}_{2}\) and \(\mathrm{Cl}_{2}\) will have remained the same; (d) the amount of \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\) will have increased.

An equilibrium mixture of \(\mathrm{SO}_{2}, \mathrm{SO}_{3},\) and \(\mathrm{O}_{2}\) gases is maintained in a \(2.05 \mathrm{L}\) flask at a temperature at which \(K_{\mathrm{c}}=35.5\) for the reaction $$2 \mathrm{SO}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{g})$$ (a) If the numbers of moles of \(\mathrm{SO}_{2}\) and \(\mathrm{SO}_{3}\) in the flask are equal, how many moles of \(\mathrm{O}_{2}\) are present? (b) If the number of moles of \(\mathrm{SO}_{3}\) in the flask is twice the number of moles of \(\mathrm{SO}_{2}\), how many moles of \(\mathrm{O}_{2}\) are present?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free