Chapter 15: Problem 55
Continuous removal of one of the products of a chemical reaction has the effect of causing the reaction to go to completion. Explain this fact in terms of Le Châtelier's principle.
Chapter 15: Problem 55
Continuous removal of one of the products of a chemical reaction has the effect of causing the reaction to go to completion. Explain this fact in terms of Le Châtelier's principle.
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine \(K_{c}\) for the reaction \(\mathrm{N}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g})+\) \(\mathrm{Cl}_{2}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{g}),\) given the following data at \(298 \mathrm{K}\) $$\frac{1}{2} \mathrm{N}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{g}) \quad K_{\mathrm{p}}=1.0 \times 10^{-9}$$ $$\operatorname{NOCl}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}) \quad K_{\mathrm{p}}=1.1 \times 10^{2}$$ $$\mathrm{NO}_{2}(\mathrm{g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}) \quad K_{\mathrm{p}}=0.3$$
Can a mixture of \(2.2 \mathrm{mol} \mathrm{O}_{2}, 3.6 \mathrm{mol} \mathrm{SO}_{2},\) and \(1.8 \mathrm{mol}\) \(\mathrm{SO}_{3}\) be maintained indefinitely in a \(7.2 \mathrm{L}\) flask at a temperature at which \(K_{\mathrm{c}}=100\) in this reaction? Explain. $$ 2 \mathrm{SO}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{g}) $$
Starting with \(0.280 \mathrm{mol} \mathrm{SbCl}_{3}\) and \(0.160 \mathrm{mol} \mathrm{Cl}_{2},\) how many moles of \(\mathrm{SbCl}_{5}, \mathrm{SbCl}_{3},\) and \(\mathrm{Cl}_{2}\) are present when equilibrium is established at \(248^{\circ} \mathrm{C}\) in a 2.50 L flask? $$\begin{aligned} \mathrm{SbCl}_{5}(\mathrm{g}) \rightleftharpoons \mathrm{SbCl}_{3}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{g}) & \\ K_{\mathrm{c}}=& 2.5 \times 10^{-2} \mathrm{at} \ 248^{\circ} \mathrm{C} \end{aligned}$$
Starting with \(\mathrm{SO}_{3}(\mathrm{g})\) at \(1.00 \mathrm{atm},\) what will be the total pressure when equilibrium is reached in the following reaction at \(700 \mathrm{K} ?\) \(2 \mathrm{SO}_{3}(\mathrm{g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \quad K_{\mathrm{p}}=1.6 \times 10^{-5}\)
\(1.00 \mathrm{g}\) each of \(\mathrm{CO}, \mathrm{H}_{2} \mathrm{O},\) and \(\mathrm{H}_{2}\) are sealed in a \(1.41 \mathrm{L}\) vessel and brought to equilibrium at 600 K. How many grams of \(\mathrm{CO}_{2}\) will be present in the equilibrium mixture? $$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{g}) \quad K_{\mathrm{c}}=23.2$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.