It is possible to write simple equations to relate \(\mathrm{pH}\) \(\mathrm{p}
K,\) and molarities \((\mathrm{M})\) of various solutions. Three such equations
are shown here.
$$\begin{aligned}
&\text {Weak acid: } \quad \mathrm{pH}=\frac{1}{2}
\mathrm{pK}_{\mathrm{a}}-\frac{1}{2} \log \mathrm{M}\\\
&\text { Weak base: } \mathrm{pH}=14.00-\frac{1}{2}
\mathrm{pK}_{\mathrm{b}}+\frac{1}{2} \log \mathrm{M}
\end{aligned}$$
Salt ofweak \(\operatorname{acid}\left(\mathrm{pK}_{\mathrm{a}}\right)\)
and strong
base: \(\quad \mathrm{pH}=14.00-\frac{1}{2}
\mathrm{pK}_{\mathrm{w}}+\frac{1}{2} \mathrm{p} K_{\mathrm{a}}+\frac{1}{2}
\log \mathrm{M}\)
(a) Derive these three equations, and point out the assumptions involved in
the derivations.
(b) Use these equations to determine the pH of 0.10 \(\mathrm{M}
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}), 0.10 \mathrm{M}
\mathrm{NH}_{3}(\mathrm{aq}),\) and \(0.10 \mathrm{M}\)
\(\mathrm{NaCH}_{3} \mathrm{COO} .\) Verify that the equations give correct
results by determining these pH values in the usual way.