Calculate \(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\) and \(\left[\mathrm{OH}^{-}\right]\) for each solution:(a) \(0.00165 \mathrm{M} \mathrm{HNO}_{3} ;\) (b) \(0.0087 \mathrm{M} \mathrm{KOH} ;\) (c) \(0.00213 \mathrm{M}\) \(\operatorname{Sr}(\mathrm{OH})_{2} ;(\mathrm{d}) 5.8 \times 10^{-4} \mathrm{M} \mathrm{HI}\)

Short Answer

Expert verified
\(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\) and \(\left[\mathrm{OH}^{-}\right]\) concentrations for each soultion are: (a) \(0.00165 M\) and \(6.06 \times 10^{-12} M\); (b) \(6.06 \times 10^{-12} M\) and \(0.0087 M\); (c) \(2.35 \times 10^{-12} M\) and \(0.00426 M\); (d) \(5.8 \times 10^{-4} M\) and \(1.72 \times 10^{-11} M\).

Step by step solution

01

Solve for (a): 0.00165 M HNO3

This is a strong acid. For every mole of HNO3, one mole of \(\mathrm{H}_{3} \mathrm{O}^{+}\) is produced. So, the concentration of \(\mathrm{H}_{3} \mathrm{O}^{+}\) ions is \(0.00165 M\). Knowing that \(KW=[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{OH}^{-}]=1.0 \times 10^{-14} M^{2} \), we can find the concentration of \(\mathrm{OH}^{-}\) ions to be \( \frac{1.0 \times 10^{-14} M^2}{0.00165M} = 6.06 \times 10^{-12} M\).
02

Solve for (b): 0.0087 M KOH

KOH is a strong base. One mole of KOH results in one mole of \(\mathrm{OH}^{-}\) ions. So, the concentration of \(\mathrm{OH}^{-}\) is \(0.0087M\). Using the water ion product, we get the \(\mathrm{H}_{3} \mathrm{O}^{+}\) concentration to be \( \frac{1.0 \times 10^{-14} M^2}{0.0087M} = 1.15 \times 10^{-12} M \).
03

Solve for (c): 0.00213 M Sr(OH)2

This is a strong base with two hydroxyl ions for each formula unit. This means we have \(0.00213 M \times 2 = 0.00426 M\) of \(\mathrm{OH}^{-} \). The \(\mathrm{H}_{3} \mathrm{O}^{+}\) concentration is thus \( \frac{1.0 \times 10^{-14} M^2}{0.00426M} = 2.35 \times 10^{-12} M \).
04

Solve for (d): 5.8 x 10^{-4} M HI

HI is a strong acid. For each mole of HI, one mole of \(\mathrm{H}_{3} \mathrm{O}^{+}\) ions is produced. This makes the concentration of \(\mathrm{H}_{3} \mathrm{O}^{+}\) to be \( 5.8 \times 10^{-4} M \). Now, compute for the \(\mathrm{OH}^{-}\) concentration giving \( \frac{1.0 \times 10^{-14} M^2}{5.8 \times 10^{-4}M} = 1.72 \times 10^{-11} M \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What is the (a) degree of ionization and (b) percent ionization of propionic acid in a solution that is \(0.45 \mathrm{M}\) \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H} ?\) $$\begin{aligned} &\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}\\\ &&\mathrm{p} K_{\mathrm{a}}=4.89 \end{aligned}$$

For the ionization of phenylacetic acid, $$\begin{array}{r} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CO}_{2} \\\ K_{\mathrm{a}}=4.9 \times 10^{-5} \end{array}$$ (a) What is \(\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}\right]\) in \(0.186 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H} ?\) (b) What is the \(\mathrm{pH}\) of \(0.121 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H} ?\)

The equilibria \(\mathrm{OH}^{-}+\mathrm{HClO} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{ClO}^{-}\) and \(\mathrm{ClO}^{-}+\mathrm{HNO}_{2} \longrightarrow \mathrm{HClO}+\mathrm{NO}_{2}^{-}\) both lie to the right. Which of the following is a list of acids ranked in order of decreasing strength? (a) \(\mathrm{HClO}>\mathrm{HNO}_{2}>\mathrm{H}_{2} \mathrm{O}\) (b) \(\mathrm{ClO}^{-}>\mathrm{NO}_{2}^{-}>\mathrm{OH}^{-}\) (c) \(\mathrm{NO}_{2}^{-}>\mathrm{ClO}^{-}>\mathrm{OH}\) (d) \(\mathrm{HNO}_{2}>\mathrm{HClO}>\mathrm{H}_{2} \mathrm{O}\) (e) none of these

Explain why \(\left[\mathrm{PO}_{4}^{3-}\right]\) in \(1.00 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}\) is not simply \(\frac{1}{3}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\) but much, much less than \(\frac{1}{3}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\)

For each of the following, identify the acids and bases involved in both the forward and reverse directions. (a) $\mathrm{HOBr}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OBr}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ (b) $\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{SO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$ (c) $\mathrm{HS}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{S}+\mathrm{OH}^{-}$ (d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O}$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free