Chapter 17: Problem 108
The most acidic of the following \(0.10 \mathrm{M}\) salt solutions is (a) \(\mathrm{Na}_{2} \mathrm{S} ;\) (b) \(\mathrm{NaHSO}_{4} ;\) (c) \(\mathrm{NaHCO}_{3} ;\) (d) \(\mathrm{Na}_{2} \mathrm{HPO}_{4}\)
Chapter 17: Problem 108
The most acidic of the following \(0.10 \mathrm{M}\) salt solutions is (a) \(\mathrm{Na}_{2} \mathrm{S} ;\) (b) \(\mathrm{NaHSO}_{4} ;\) (c) \(\mathrm{NaHCO}_{3} ;\) (d) \(\mathrm{Na}_{2} \mathrm{HPO}_{4}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUsing appropriate equilibrium constants but without doing detailed calculations, determine whether a solution can be simultaneously: (a) \(0.10 \mathrm{M} \mathrm{NH}_{3}\) and \(0.10 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl},\) with \(\mathrm{pH}=6.07\) (b) \(0.10 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\) and \(0.058 \mathrm{M} \mathrm{HI}\) (c) \(0.10 \mathrm{M} \mathrm{KNO}_{2}\) and \(0.25 \mathrm{M} \mathrm{KNO}_{3}\) (d) \(0.050 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}\) and \(0.65 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}\) (e) \(0.018 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\) and \(0.018 \mathrm{M} \mathrm{NaC}_{6} \mathrm{H}_{5} \mathrm{COO}\) with \(\mathrm{pH}=4.20\) (f) \(0.68 \mathrm{M} \mathrm{KCl}, 0.42 \mathrm{M} \mathrm{KNO}_{3}, 1.2 \mathrm{M} \mathrm{NaCl},\) and \(0.55 \mathrm{M}\) \(\mathrm{NaCH}_{3} \mathrm{COO},\) with \(\mathrm{pH}=6.4\)
Piperazine is a diprotic weak base used as a corrosion inhibitor and an insecticide. Its ionization is described by the following equations. \(\mathrm{HN}\left(\mathrm{C}_{4} \mathrm{H}_{8}\right) \mathrm{NH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\) \(\left[\mathrm{HN}\left(\mathrm{C}_{4} \mathrm{H}_{8}\right) \mathrm{NH}_{2}\right]^{+}+\mathrm{OH}^{-} \quad \mathrm{p} K_{\mathrm{b}_{1}}=4.22\) \(\left[\mathrm{HN}\left(\mathrm{C}_{4} \mathrm{H}_{8}\right) \mathrm{NH}_{2}\right]^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\) \(\left[\mathrm{H}_{2} \mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{8}\right) \mathrm{NH}_{2}\right]^{2+}+\mathrm{OH}^{-} \quad \mathrm{p} K_{\mathrm{b}_{2}}=8.67\) . The piperazine used commercially is a hexahydrate, \(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{N}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} .\) A \(1.00-\mathrm{g}\) sample of this hexahydrate is dissolved in \(100.0 \mathrm{mL}\) of water and titrated with 0.500 M HCl. Sketch a titration curve for this titration, indicating (a) the initial \(\mathrm{pH} ;\) (b) the pH at the halfneutralization point of the first neutralization; (c) the volume of \(\mathrm{HCl}(\text { aq })\) required to reach the first equivalence point; (d) the pH at the first equivalence point; (e) the \(\mathrm{pH}\) at the point at which the second step of the neutralization is half-completed; (f) the volume of \(0.500 \mathrm{M} \mathrm{HCl}(\) aq) required to reach the second equivalence point of the titration; (g) the pH at the second equivalence point.
Thymol blue indicator has \(t w o\) pH ranges. It changes color from red to yellow in the pH range from 1.2 to 2.8, and from yellow to blue in the pH range from 8.0 to 9.6. What is the color of the indicator in each of the following situations? (a) The indicator is placed in \(350.0 \mathrm{mL}\) of \(0.205 \mathrm{M} \mathrm{HCl}\) (b) To the solution in part (a) is added \(250.0 \mathrm{mL}\) of \(0.500 \mathrm{M} \mathrm{NaNO}_{2}\) (c) To the solution in part (b) is added \(150.0 \mathrm{mL}\) of \(0.100 \mathrm{M} \mathrm{NaOH}\) (d) To the solution in part (c) is added \(5.00 \mathrm{g} \mathrm{Ba}(\mathrm{OH})_{2}\)
Calculate the pH of the buffer formed by mixing equal volumes \(\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right]=1.49 \mathrm{M} \quad\) with \(\quad\left[\mathrm{HClO}_{4}\right]=\) 1.001 M. \(K_{\mathrm{b}}=4.3 \times 10^{-4}\)
Consider a solution containing two weak monoprotic acids with dissociation constants \(K_{\mathrm{HA}}\) and \(K_{\mathrm{HB}}\). Find the charge balance equation for this system, and use it to derive an expression that gives the concentration of \(\mathrm{H}_{3} \mathrm{O}^{+}\) as a function of the concentrations of \(\mathrm{HA}\) and HB and the various constants.
What do you think about this solution?
We value your feedback to improve our textbook solutions.