Chapter 17: Problem 89
The \(\mathrm{pH}\) of ocean water depends on the amount of atmospheric carbon dioxide. The dissolution of carbon dioxide in ocean water can be approximated by the following chemical reactions (Henry's Law constant for \(\left.\mathrm{CO}_{2} \text { is } K_{\mathrm{H}}=\left[\mathrm{CO}_{2}(\mathrm{aq})\right] /\left[\mathrm{CO}_{2}(\mathrm{g})\right]=0.8317 .\right)\) \(\mathrm{CO}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{aq})\) \(\mathrm{CaCO}_{3}(\mathrm{s}) \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}^{-}(\mathrm{aq})\) \(\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\) \(\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(1)\) (a) Use the equations above to determine the hydronium ion concentration as a function of \(\left[\mathrm{CO}_{2}(\mathrm{g})\right]\) and \(\left[\mathrm{Ca}^{2+}\right]\) (b) During preindustrial conditions, we will assume that the equilibrium concentration of \(\left[\mathrm{CO}_{2}(\mathrm{g})\right]=280\) ppm and \(\left[\mathrm{Ca}^{2+}\right]=10.24 \mathrm{mM} .\) Calculate the \(\mathrm{pH}\) of a sample of ocean water.