Write \(K_{\text {sp }}\) expressions for the following equilibria. For example, for the reaction \(\mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\) \(\mathrm{Cl}^{-}(\mathrm{aq}), K_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]\). (a) \(\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{s}) \rightleftharpoons 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})\) (b) \(\operatorname{Ra}\left(\mathrm{IO}_{3}\right)_{2}(\mathrm{s}) \rightleftharpoons \mathrm{Ra}^{2+}(\mathrm{aq})+2 \mathrm{IO}_{3}^{-}(\mathrm{aq})\) (c) \(\mathrm{Ni}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{s}) \rightleftharpoons 3 \mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{PO}_{4}^{3-}(\mathrm{aq})\) (d) \(\mathrm{PuO}_{2} \mathrm{CO}_{3}(\mathrm{s}) \rightleftharpoons \mathrm{PuO}_{2}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq})\)

Short Answer

Expert verified
The \(K_{sp}\) expressions for the given equilibria are: (a) \(K_{sp}=[Ag^+]^2[SO_{4}^{2-}]\), (b) \(K_{sp}=[Ra^{2+}][IO_{3}^{-}]^2\), (c) \(K_{sp}=[Ni^{2+}]^3[PO_{4}^{3-}]^2\), (d) \(K_{sp}=[PuO_{2}^{2+}][CO_{3}^{2-}]\)

Step by step solution

01

Write expression for Ag2SO4

The equilibrium reaction for the dissociation of \(Ag_2SO_4\) is: \(Ag_{2}SO_{4}(s) \rightleftharpoons 2Ag^{+}(aq)+SO_{4}^{2-}(aq)\). From this, the \(K_{sp}\) expression can be written as: \(K_{sp}=[Ag^+]^2[SO_{4}^{2-}]\)
02

Write expression for Ra(IO3)2

The equilibrium reaction for the dissociation of \(Ra(IO_3)_2\) is: \(Ra(IO_3)_2(s) \rightleftharpoons Ra^{2+}(aq)+2IO_{3}^{-}(aq)\). The \(K_{sp}\) expression can be written as: \(K_{sp}=[Ra^{2+}][IO_{3}^{-}]^2\)
03

Write expression for Ni3(PO4)2

The equilibrium reaction for the dissociation of \(Ni_3(PO_4)_2\) is: \(Ni_{3}(PO_{4})_{2}(s) \rightleftharpoons 3Ni^{2+}(aq)+2PO_{4}^{3-}(aq)\). Using this information, we can write the \(K_{sp}\) expression as: \(K_{sp}=[Ni^{2+}]^3[PO_{4}^{3-}]^2\)
04

Write expression for PuO2CO3

The equilibrium reaction for the dissociation of \(PuO_2CO_3\) is: \(PuO_{2} CO_{3}(s) \rightleftharpoons PuO_{2}^{2+}(aq)+CO_{3}^{2-}(aq)\). From this, we can write the \(K_{sp}\) expression as: \(K_{sp}=[PuO_{2}^{2+}][CO_{3}^{2-}]\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Determine whether \(1.50 \mathrm{g} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) (oxalic acid: \(K_{\mathrm{a}_{1}}=\) \(\left.5.2 \times 10^{-2}, K_{\mathrm{a}_{2}}=5.4 \times 10^{-5}\right)\) can be dissolved in \(0.200 \mathrm{L}\) of \(0.150 \mathrm{M} \mathrm{CaCl}_{2}\) without the formation of \(\mathrm{CaC}_{2} \mathrm{O}_{4}(\mathrm{s})\left(K_{\mathrm{sp}}=1.3 \times 10^{-9}\right)\).

Can the following ion concentrations be maintained in the same solution without a precipitate forming: \(\left[\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}\right]=0.048 \mathrm{M},\left[\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right]=0.76 \mathrm{M},\) and \(\left[\mathrm{I}^{-}\right]=2.0 \mathrm{M} ?\)

A solution is \(0.010 \mathrm{M}\) in both \(\mathrm{CrO}_{4}^{2-}\) and \(\mathrm{SO}_{4}^{2-}\). To this solution, \(0.50 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\text { aq })\) is slowly added. (a) Which anion will precipitate first from solution? (b) What is \(\left[\mathrm{Pb}^{2+}\right]\) at the point at which the second anion begins to precipitate? (c) Are the two anions effectively separated by this fractional precipitation?

Adding \(1.85 \mathrm{g} \mathrm{Na}_{2} \mathrm{SO}_{4}\) to \(500.0 \mathrm{mL}\) of saturated aqueous \(\mathrm{BaSO}_{4}:\) (a) reduces \(\left[\mathrm{Ba}^{2+}\right] ;\) (b) reduces \(\left[\mathrm{SO}_{4}^{2-}\right]\); (c) increases the solubility of \(\mathrm{BaSO}_{4} ;\) (d) has no effect.

The electrolysis of \(\mathrm{MgCl}_{2}(\mathrm{aq})\) can be represented as \(\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(1) \longrightarrow\) \(\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{g})\) The electrolysis of a 315 mL sample of \(0.185 \mathrm{M} \mathrm{MgCl}_{2}\) is continued until \(0.652 \mathrm{L} \mathrm{H}_{2}(\mathrm{g})\) at \(22^{\circ} \mathrm{C}\) and \(752 \mathrm{mmHg}\) has been collected. Will \(\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{s})\) precipitate when electrolysis is carried to this point? [Hint: Notice that \(\left[\mathrm{Mg}^{2+}\right]\) remains constant throughout the electrolysis, but \(\left.\left[\mathrm{OH}^{-}\right] \text {increases. }\right]\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free