If \(100.0 \mathrm{mL}\) of \(0.0025 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})\) is saturated with \(\mathrm{CaSO}_{4},\) how many grams of \(\mathrm{CaSO}_{4}\) would be present in the solution? [Hint: Does the usual simplifying assumption hold?]

Short Answer

Expert verified
The solution would contain 0.034 grams of \(\mathrm{CaSO}_{4}\).

Step by step solution

01

Calculate the molar mass of \(\mathrm{CaSO}_{4}\)

Add the atomic masses of calcium, sulfur, and four oxygen atoms to get the molar mass of \(\mathrm{CaSO}_{4}\): \(\mathrm{Molar \: mass\: of\: CaSO}_{4}=40.08+32.06+4*16.00=136.14 \: \mathrm{g/mol}\)
02

Determine the moles of \(\mathrm{Na}_{2}\mathrm{SO}_{4}\) present in the solution

Use the molarity and volume of the solution to find the moles of \(\mathrm{Na}_{2}\mathrm{SO}_{4}\):\(\mathrm{Moles \: of\: Na}_{2}\mathrm{SO}_{4}=\mathrm{Molarity}\times\mathrm{Volume}=0.0025\: M\times 0.100\: L=0.00025\: \mathrm{moles}\)Given the stoichiometry of the reaction, the moles of \(\mathrm{Na}_{2}\mathrm{SO}_{4}\) equal the moles of \(\mathrm{CaSO}_{4}\). So, you have 0.00025 moles of \(\mathrm{CaSO}_{4}\).
03

Convert moles of \(\mathrm{CaSO}_{4}\) to grams

Use the molar mass of \(\mathrm{CaSO}_{4}\) calculated in Step 1 to convert the moles of \(\mathrm{CaSO}_{4}\) to grams:\(\mathrm{Grams \: of\: CaSO}_{4}=\mathrm{Moles\: of\: CaSO}_{4}\times \mathrm{molar \: mass\: of\: CaSO}_{4}=0.00025\: \mathrm{moles}\times 136.14\: \mathrm{g/mol}=0.034\: \mathrm{g}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A solution is \(0.10 \mathrm{M}\) in free \(\mathrm{NH}_{3}, 0.10 \mathrm{M}\) in \(\mathrm{NH}_{4} \mathrm{Cl}\), and \(0.015 \mathrm{M}\) in \(\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} .\) Will \(\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{s})\) precipitate from this solution? \(K_{\mathrm{sp}}\) of \(\mathrm{Cu}(\mathrm{OH})_{2}\) is \(2.2 \times 10^{-20}\).

Which one of the following solutions can be used to separate the cations in an aqueous solution in which \(\left[\mathrm{Ba}^{2+}\right]=\left[\mathrm{Ca}^{2+}\right]=0.050 \mathrm{M}: 0.10 \mathrm{M} \mathrm{NaCl}(\mathrm{aq}), 0.05 \mathrm{M}\) \(\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}),\) \(0.001 \mathrm{M}\) \(\mathrm{NaOH}(\mathrm{aq}),\) or \(0.50 \mathrm{M}\) \(\mathrm{Na}_{2} \mathrm{CO}_{3}(\text { aq }) ?\) Explain why.

Briefly describe each of the following ideas, methods, or phenomena: (a) common-ion effect in solubility equilibrium; (b) fractional precipitation; (c) ion-pair formation; (d) qualitative cation analysis.

Determine the molar solubility of lead(II) azide, \(\mathrm{Pb}\left(\mathrm{N}_{3}\right)_{2},\) in a buffer solution with \(\mathrm{pH}=3.00,\) given that \(\mathrm{Pb}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{s}) \rightleftharpoons \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{N}_{3}^{-}(\mathrm{aq})\) \(K_{\mathrm{sp}}=2.5 \times 10^{-9}\) \(\mathrm{HN}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{N}_{3}^{-}(\mathrm{aq})\) \(K_{\mathrm{a}}=1.9 \times 10^{-5}\)

Saturated solutions of sodium phosphate, copper(II) chloride, and ammonium acetate are mixed together. The precipitate is (a) copper(II) acetate; (b) copper(II) phosphate; (c) sodium chloride; (d) ammonium phosphate; (e) nothing precipitates.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free