Chapter 18: Problem 80
The solubility of \(\mathrm{AgCN}(\mathrm{s})\) in \(0.200 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})\) is \(8.8 \times 10^{-6} \mathrm{mol} / \mathrm{L} .\) Calculate \(K_{\mathrm{sp}}\) for \(\mathrm{AgCN}\).
Chapter 18: Problem 80
The solubility of \(\mathrm{AgCN}(\mathrm{s})\) in \(0.200 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})\) is \(8.8 \times 10^{-6} \mathrm{mol} / \mathrm{L} .\) Calculate \(K_{\mathrm{sp}}\) for \(\mathrm{AgCN}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite solubility equilibrium equations that are described by the following \(K_{\mathrm{sp}}\) expressions. For example, \(K_{\mathrm{sp}}=\) \(\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right] \quad\) represents \(\quad \mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\) \(\mathrm{Cl}^{-}(\mathrm{aq})\). (a) \(K_{\mathrm{sp}}=\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}\) (b) \(K_{\mathrm{sp}}=\left[\mathrm{BiO}^{+}\right]\left[\mathrm{OH}^{-}\right]\) (c) \(K_{\mathrm{sp}}=\left[\mathrm{Hg}_{2}^{2+}\right]\left[\mathrm{I}^{-}\right]^{2}\) (d) \(K_{\mathrm{sp}}=\left[\mathrm{Pb}^{2+}\right]^{3}\left[\mathrm{AsO}_{4}^{3-}\right]^{2}\)
Saturated solutions of sodium phosphate, copper(II) chloride, and ammonium acetate are mixed together. The precipitate is (a) copper(II) acetate; (b) copper(II) phosphate; (c) sodium chloride; (d) ammonium phosphate; (e) nothing precipitates.
To increase the molar solubility of \(\mathrm{CaCO}_{3}(\mathrm{s})\) in a saturated aqueous solution, add (a) ammonium chloride; (b) sodium carbonate; (c) ammonia; (d) more water.
A solution is \(0.05 \mathrm{M}\) in \(\mathrm{Cu}^{2+},\) in \(\mathrm{Hg}^{2+},\) and in \(\mathrm{Mn}^{2+}\). Which sulfides will precipitate if the solution is made to be \(0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{S}(\mathrm{aq})\) and \(0.010 \mathrm{M} \mathrm{HCl}(\mathrm{aq}) ?\) For \(\mathrm{CuS}\), \(K_{\mathrm{spa}}=6 \times 10^{-16} ;\) for \(\mathrm{HgS}, K_{\mathrm{spa}}=2 \times 10^{-32} ;\) for \(\mathrm{MnS}\), \(K_{\mathrm{spa}}=3 \times 10^{7}\).
Which one of the following solutions can be used to separate the cations in an aqueous solution in which \(\left[\mathrm{Ba}^{2+}\right]=\left[\mathrm{Ca}^{2+}\right]=0.050 \mathrm{M}: 0.10 \mathrm{M} \mathrm{NaCl}(\mathrm{aq}), 0.05 \mathrm{M}\) \(\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}),\) \(0.001 \mathrm{M}\) \(\mathrm{NaOH}(\mathrm{aq}),\) or \(0.50 \mathrm{M}\) \(\mathrm{Na}_{2} \mathrm{CO}_{3}(\text { aq }) ?\) Explain why.
What do you think about this solution?
We value your feedback to improve our textbook solutions.