The solubility of \(\mathrm{AgCN}(\mathrm{s})\) in \(0.200 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})\) is \(8.8 \times 10^{-6} \mathrm{mol} / \mathrm{L} .\) Calculate \(K_{\mathrm{sp}}\) for \(\mathrm{AgCN}\).

Short Answer

Expert verified
The \(K_{sp}\) for \(AgCN\) is \(7.744 \times 10^{-11}\).

Step by step solution

01

Write the balanced chemical equation

First, we need to write out the balanced chemical equation. The chemical equation for the dissolution of \(AgCN\) in \(NH_3\) is: \[AgCN(s) + 2NH_3(aq) \leftrightarrow [Ag(NH_3)_2]^+ (aq) + CN^{-} (aq)\]
02

Write the expression for \(K_{sp}\)

Now, express the equilibrium constant for the reaction. In this case, it is called the solubility product constant (\(K_{sp}\)): \[K_{sp} = [[Ag(NH_3)_2]^+] \cdot [CN^-]\]
03

Substitution

As the solubility of \(AgCN\) is given to be \(8.8 \times 10^{-6}\) mol/L, this is the concentration of both [Ag(NH3)2]+ and CN- at equilibrium. Substitute this into our \(K_{sp}\) expression: \[K_{sp} = (8.8 \times 10^{-6}) \cdot (8.8 \times 10^{-6})\]
04

Calculate the value of \(K_{sp}\)

Finally, calculate the value of \(K_{sp}\) by multiplying these concentrations: \[K_{sp} = (8.8 \times 10^{-6})^2 = 7.744 \times 10^{-11}\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Write solubility equilibrium equations that are described by the following \(K_{\mathrm{sp}}\) expressions. For example, \(K_{\mathrm{sp}}=\) \(\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right] \quad\) represents \(\quad \mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\) \(\mathrm{Cl}^{-}(\mathrm{aq})\). (a) \(K_{\mathrm{sp}}=\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}\) (b) \(K_{\mathrm{sp}}=\left[\mathrm{BiO}^{+}\right]\left[\mathrm{OH}^{-}\right]\) (c) \(K_{\mathrm{sp}}=\left[\mathrm{Hg}_{2}^{2+}\right]\left[\mathrm{I}^{-}\right]^{2}\) (d) \(K_{\mathrm{sp}}=\left[\mathrm{Pb}^{2+}\right]^{3}\left[\mathrm{AsO}_{4}^{3-}\right]^{2}\)

Saturated solutions of sodium phosphate, copper(II) chloride, and ammonium acetate are mixed together. The precipitate is (a) copper(II) acetate; (b) copper(II) phosphate; (c) sodium chloride; (d) ammonium phosphate; (e) nothing precipitates.

To increase the molar solubility of \(\mathrm{CaCO}_{3}(\mathrm{s})\) in a saturated aqueous solution, add (a) ammonium chloride; (b) sodium carbonate; (c) ammonia; (d) more water.

A solution is \(0.05 \mathrm{M}\) in \(\mathrm{Cu}^{2+},\) in \(\mathrm{Hg}^{2+},\) and in \(\mathrm{Mn}^{2+}\). Which sulfides will precipitate if the solution is made to be \(0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{S}(\mathrm{aq})\) and \(0.010 \mathrm{M} \mathrm{HCl}(\mathrm{aq}) ?\) For \(\mathrm{CuS}\), \(K_{\mathrm{spa}}=6 \times 10^{-16} ;\) for \(\mathrm{HgS}, K_{\mathrm{spa}}=2 \times 10^{-32} ;\) for \(\mathrm{MnS}\), \(K_{\mathrm{spa}}=3 \times 10^{7}\).

Which one of the following solutions can be used to separate the cations in an aqueous solution in which \(\left[\mathrm{Ba}^{2+}\right]=\left[\mathrm{Ca}^{2+}\right]=0.050 \mathrm{M}: 0.10 \mathrm{M} \mathrm{NaCl}(\mathrm{aq}), 0.05 \mathrm{M}\) \(\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}),\) \(0.001 \mathrm{M}\) \(\mathrm{NaOH}(\mathrm{aq}),\) or \(0.50 \mathrm{M}\) \(\mathrm{Na}_{2} \mathrm{CO}_{3}(\text { aq }) ?\) Explain why.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free