Chapter 19: Problem 112
At room temperature and normal atmospheric pressure, is the entropy of the universe positive, negative, or zero for the transition of carbon dioxide solid to liquid?
Chapter 19: Problem 112
At room temperature and normal atmospheric pressure, is the entropy of the universe positive, negative, or zero for the transition of carbon dioxide solid to liquid?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe following standard Gibbs energy changes are given for \(25^{\circ} \mathrm{C}\) (1) \(\mathrm{SO}_{2}(\mathrm{g})+3 \mathrm{CO}(\mathrm{g}) \longrightarrow \operatorname{COS}(\mathrm{g})+2 \mathrm{CO}_{2}(\mathrm{g})\) \(\Delta G^{\circ}=-246.4 \mathrm{kJ}\) (2) \(\mathrm{CS}_{2}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \operatorname{COS}(\mathrm{g})+\mathrm{H}_{2} \mathrm{S}(\mathrm{g})\) \(\Delta G^{\circ}=-41.5 \mathrm{kJ}\) (3) \(\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{S}(\mathrm{g}) \longrightarrow \operatorname{COS}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{g})\) \(\Delta G^{\circ}=+1.4 \mathrm{kJ}\) (4) \(\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{g})\) \(\Delta G^{\circ}=-28.6 \mathrm{kJ}\) Combine the preceding equations, as necessary, to obtain \(\Delta G^{\circ}\) values for the following reactions. (a) \(\operatorname{COS}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow\) \(\begin{aligned} \mathrm{SO}_{2}(\mathrm{g})+\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{g}) & \Delta G^{\circ}=? \end{aligned}\) (b) \(\cos (g)+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow\) \(\mathrm{SO}_{2}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{g}) \quad \Delta G^{\circ}=?\) \(\left.+\quad \mathrm{H}_{\mathrm{O}} \mathrm{C}(\mathrm{d})=\mathrm{CO}_{-}^{\circ} \mathrm{G}\right)+\mathrm{H}_{-}^{-} \mathrm{S}(\mathrm{q})\) (c) \(\cos (\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{g})+\mathrm{H}_{2} \mathrm{S}(\mathrm{g})\) \(\Delta G^{\circ}=?\) Of reactions (a), (b), and (c), which is spontaneous in the forward direction when reactants and products are present in their standard states?
\(\mathrm{H}_{2}(\mathrm{g})\) can be prepared by passing steam over hot iron: \(3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{s})+4 \mathrm{H}_{2}(\mathrm{g})\) (a) Write an expression for the thermodynamic equilibrium constant for this reaction. (b) Explain why the partial pressure of \(\mathrm{H}_{2}(\mathrm{g})\) is independent of the amounts of \(\mathrm{Fe}(\mathrm{s})\) and \(\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{s})\) present. (c) Can we conclude that the production of \(\mathrm{H}_{2}(\mathrm{g})\) from \(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\) could be accomplished regardless of the proportions of \(\mathrm{Fe}(\mathrm{s})\) and \(\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{s})\) present? Explain.
The standard Gibbs energy change for the reaction \(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons$$$ \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$$is \)27.07 \mathrm{kJmol}^{-1}\( at 298 K. Use this thermodynamic quantity to decide in which direction the reaction is spontaneous when the concentrations of \)\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq}), \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq}),\( and \)\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\( are \)0.10 \mathrm{M}, 1.0 \times 10^{-3} \mathrm{M},\( and \)1.0 \times 10^{-3} \mathrm{M},$ respectively.
Titanium is obtained by the reduction of \(\mathrm{TiCl}_{4}(1)\) which in turn is produced from the mineral rutile \(\left(\mathrm{TiO}_{2}\right)\) (a) With data from Appendix D, determine \(\Delta G^{\circ}\) at 298 K for this reaction. $$\mathrm{TiO}_{2}(\mathrm{s})+2 \mathrm{Cl}_{2}(\mathrm{g}) \longrightarrow \mathrm{TiCl}_{4}(1)+\mathrm{O}_{2}(\mathrm{g})$$ (b) Show that the conversion of \(\mathrm{TiO}_{2}(\mathrm{s})\) to \(\mathrm{TiCl}_{4}(1)\) with reactants and products in their standard states, is spontaneous at \(298 \mathrm{K}\) if the reaction in (a) is coupled with the reaction $$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{g})$$
At \(298 \mathrm{K},\) for the reaction \(2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq})+\) \(2 \mathrm{NO}_{2}(\mathrm{g}) \longrightarrow \mathrm{Br}_{2}(1)+2 \mathrm{HNO}_{2}(\mathrm{aq}), \Delta H^{\circ}=-61.6 \mathrm{kJ}\) and the standard molar entropies are \(\mathrm{H}^{+}(\mathrm{aq}), 0 \mathrm{JK}^{-1}\) \(\mathrm{Br}^{-}(\mathrm{aq}), 82.4 \mathrm{JK}^{-1} ; \mathrm{NO}_{2}(\mathrm{g}), 240.1 \mathrm{JK}^{-1} ; \mathrm{Br}_{2}(1), 152.2\) \(\mathrm{J} \mathrm{K}^{-1} ; \mathrm{HNO}_{2}(\mathrm{aq}), 135.6 \mathrm{JK}^{-1} .\) Determine (a) \(\Delta G^{\circ}\) at 298 K and (b) whether the reaction proceeds spontaneously in the forward or the reverse direction when reactants and products are in their standard states.
What do you think about this solution?
We value your feedback to improve our textbook solutions.