Chapter 19: Problem 16
If a reaction can be carried out only by electrolysis, which of the following changes in a thermodynamic property must apply: (a) \(\Delta H>0 ;\) (b) \(\Delta S>0\) (c) \(\Delta G=\Delta H ;\) (d) \(\Delta G>0 ?\) Explain.
Chapter 19: Problem 16
If a reaction can be carried out only by electrolysis, which of the following changes in a thermodynamic property must apply: (a) \(\Delta H>0 ;\) (b) \(\Delta S>0\) (c) \(\Delta G=\Delta H ;\) (d) \(\Delta G>0 ?\) Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeUse ideas from this chapter to explain this famous remark attributed to Rudolf Clausius (1865)\(:^{\prime \prime} \mathrm{Die}\) Energie der Welt ist konstant; die Entropie der Welt strebt einem Maximum zu." ("The energy of the world is constant; the entropy of the world increases toward a maximum.")
The following standard Gibbs energy changes are given for \(25^{\circ} \mathrm{C}\) (1) \(\mathrm{SO}_{2}(\mathrm{g})+3 \mathrm{CO}(\mathrm{g}) \longrightarrow \operatorname{COS}(\mathrm{g})+2 \mathrm{CO}_{2}(\mathrm{g})\) \(\Delta G^{\circ}=-246.4 \mathrm{kJ}\) (2) \(\mathrm{CS}_{2}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \operatorname{COS}(\mathrm{g})+\mathrm{H}_{2} \mathrm{S}(\mathrm{g})\) \(\Delta G^{\circ}=-41.5 \mathrm{kJ}\) (3) \(\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{S}(\mathrm{g}) \longrightarrow \operatorname{COS}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{g})\) \(\Delta G^{\circ}=+1.4 \mathrm{kJ}\) (4) \(\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{g})\) \(\Delta G^{\circ}=-28.6 \mathrm{kJ}\) Combine the preceding equations, as necessary, to obtain \(\Delta G^{\circ}\) values for the following reactions. (a) \(\operatorname{COS}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow\) \(\begin{aligned} \mathrm{SO}_{2}(\mathrm{g})+\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{g}) & \Delta G^{\circ}=? \end{aligned}\) (b) \(\cos (g)+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow\) \(\mathrm{SO}_{2}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{g}) \quad \Delta G^{\circ}=?\) \(\left.+\quad \mathrm{H}_{\mathrm{O}} \mathrm{C}(\mathrm{d})=\mathrm{CO}_{-}^{\circ} \mathrm{G}\right)+\mathrm{H}_{-}^{-} \mathrm{S}(\mathrm{q})\) (c) \(\cos (\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{g})+\mathrm{H}_{2} \mathrm{S}(\mathrm{g})\) \(\Delta G^{\circ}=?\) Of reactions (a), (b), and (c), which is spontaneous in the forward direction when reactants and products are present in their standard states?
\(\mathrm{H}_{2}(\mathrm{g})\) can be prepared by passing steam over hot iron: \(3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{s})+4 \mathrm{H}_{2}(\mathrm{g})\) (a) Write an expression for the thermodynamic equilibrium constant for this reaction. (b) Explain why the partial pressure of \(\mathrm{H}_{2}(\mathrm{g})\) is independent of the amounts of \(\mathrm{Fe}(\mathrm{s})\) and \(\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{s})\) present. (c) Can we conclude that the production of \(\mathrm{H}_{2}(\mathrm{g})\) from \(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\) could be accomplished regardless of the proportions of \(\mathrm{Fe}(\mathrm{s})\) and \(\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{s})\) present? Explain.
The following data are given for the two solid forms of \(\mathrm{HgI}_{2}\) at \(298 \mathrm{K}\). $$\begin{array}{llll} \hline & \Delta H_{f}^{\circ} & \Delta G_{f,}^{\circ} & S^{\circ} \\ & \text { kJ mol }^{-1} & \text {kJ mol }^{-1} & \text {J mol }^{-1} \text {K }^{-1} \\ \hline \mathrm{HgI}_{2} \text { (red) } & -105.4 & -101.7 & 180 \\ \mathrm{Hg} \mathrm{I}_{2} \text { (yellow) } & -102.9 & (?) & (?) \\ \hline \end{array}$$ Estimate values for the two missing entries. To do this, assume that for the transition \(\mathrm{HgI}_{2}(\mathrm{red}) \longrightarrow\) \(\mathrm{HgI}_{2}(\text { yellow }),\) the values of \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) at \(25^{\circ} \mathrm{C}\) have the same values that they do at the equilibrium temperature of \(127^{\circ} \mathrm{C}\).
Sodium carbonate, an important chemical used in the production of glass, is made from sodium hydrogen carbonate by the reaction \(2 \mathrm{NaHCO}_{3}(\mathrm{s}) \rightleftharpoons \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\) Data for the temperature variation of \(K_{\mathrm{p}}\) for this reaction are \(K_{\mathrm{p}}=1.66 \times 10^{-5}\) at \(30^{\circ} \mathrm{C} ; 3.90 \times 10^{-4} \mathrm{at}\) \(50^{\circ} \mathrm{C} ; 6.27 \times 10^{-3}\) at \(70^{\circ} \mathrm{C} ;\) and \(2.31 \times 10^{-1}\) at \(100^{\circ} \mathrm{C}\) (a) Plot a graph similar to Figure \(19-12,\) and determine \(\Delta H^{\circ}\) for the reaction. (b) Calculate the temperature at which the total gas pressure above a mixture of \(\mathrm{NaHCO}_{3}(\mathrm{s})\) and \(\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{s})\) is \(2.00 \mathrm{atm}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.