From the data given in the following table, determine \(\Delta S^{\circ} \quad\) for the reaction \(\quad \mathrm{NH}_{3}(\mathrm{g})+\mathrm{HCl}(\mathrm{g}) \longrightarrow\) \(\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) .\) All data are at \(298 \mathrm{K}\) $$\begin{array}{lcc} \hline & \Delta H_{f}^{\circ}, \mathrm{kJ} \mathrm{mol}^{-1} & \Delta G_{f,}^{\circ} \mathrm{kJ} \mathrm{mol}^{-1} \\ \hline \mathrm{NH}_{3}(\mathrm{g}) & -46.11 & -16.48 \\ \mathrm{HCl}(\mathrm{g}) & -92.31 & -95.30 \\ \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) & -314.4 & -202.9 \\ \hline \end{array}$$

Short Answer

Expert verified
\(\Delta S^{\circ} = -0.284 \ K^{-1} mol^{-1}\)

Step by step solution

01

Identify the relevant thermodynamic relation

The relationship between Gibbs Free Energy (\( \Delta G \)), Enthalpy (\( \Delta H \)), Temperature (T) and Entropy (\(\Delta S\)) is given by the equation: \[ \Delta G = \Delta H -T \Delta S \]Considering we are dealing with standard conditions (298 K), this can be adapted to:\[ \Delta G^{\circ} = \Delta H^{\circ} -T \Delta S^{\circ} \]To find \(\Delta S^{\circ}\), we rearrange the equation like so:\[ \Delta S^{\circ} = (\Delta H^{\circ} - \Delta G^{\circ}) / T \]
02

Calculate the change in enthalpy and Gibbs free energy of the reaction

Next, calculate the enthalpy (\(\Delta H_f^{\circ}\)) and Gibbs free energy (\(\Delta G_f^{\circ}\)) for the reaction. This can be done using the provided tables and the formulas:\[\Delta H^{\circ} = \sum \Delta H_f^{\circ} (products) - \sum \Delta H_f^{\circ} (reactants)\]\[\Delta G^{\circ} = \sum \Delta G_f^{\circ} (products) - \sum \Delta G_f^{\circ} (reactants)\]For our reaction:\[\Delta H^{\circ}= \Delta H_f^{\circ}(NH_{4}Cl) -(\Delta H_f^{\circ}(NH_{3}) + \Delta H_f^{\circ}(HCl)) = -314.4-(-46.11-92.31) = -175.98 \,kJ/mol \]\[\Delta G^{\circ}= \Delta G_f^{\circ}(NH_{4}Cl)- (\Delta G_f^{\circ}(NH_{3}) + \Delta G_f^{\circ}(HCl)) = -202.9 -(-16.48-95.3) = -91.12 \, kJ/mol \]
03

Determine the standard entropy change

Finally, calculate the standard entropy change (\(\Delta S^{\circ}\)) using the formula from Step 1:\[\Delta S^{\circ} = (\Delta H^{\circ} - \Delta G^{\circ}) / T = (-175.98 - (-91.12)) / 298 = -0.284 \ K^{-1} mol^{-1} \]Notice that the units of \(\Delta S^{\circ}\) are K^{-1}mol^{-1}, which are the proper units for entropy

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Briefly describe each of the following ideas, methods, or phenomena: (a) absolute molar entropy; (b) coupled reactions; (c) Trouton's rule; (d) evaluation of an equilibrium constant from tabulated thermodynamic data.

For the reaction \(2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{g})\) all but one of the following equations is correct. Which is incorrect, and why? (a) \(K=K_{\mathrm{p}} ;\) (b) \(\Delta S^{\circ}=\) \(\left(\Delta G^{\circ}-\Delta H^{\circ}\right) / T ;\left(\text { c) } K_{\mathrm{p}}=e^{-\Delta G^{\circ} / R T} ;(\mathrm{d}) \Delta G=\Delta G^{\circ}+\right.\) \(R T \ln Q\).

Arrange the entropy changes of the following processes, all at \(25^{\circ} \mathrm{C},\) in the expected order of increasing \(\Delta S,\) and explain your reasoning: (a) \(\mathrm{H}_{2} \mathrm{O}(1,1 \mathrm{atm}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}, 1 \mathrm{atm})\) (b) \(\mathrm{CO}_{2}(\mathrm{s}, 1 \mathrm{atm}) \longrightarrow \mathrm{CO}_{2}(\mathrm{g}, 10 \mathrm{mm} \mathrm{Hg})\) (c) \(\mathrm{H}_{2} \mathrm{O}(1,1 \mathrm{atm}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}, 10 \mathrm{mmHg})\)

At \(298 \mathrm{K}, \Delta G_{\mathrm{f}}^{\mathrm{p}}[\mathrm{CO}(\mathrm{g})]=-137.2 \mathrm{kJ} / \mathrm{mol}\) and \(K_{\mathrm{p}}=\) \(6.5 \times 10^{11}\) for the reaction \(\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{g}) \rightleftharpoons\) \(\mathrm{COCl}_{2}(\mathrm{g}) . \quad\) Use these data to determine \(\Delta G_{f}\left[\mathrm{COCl}_{2}(\mathrm{g})\right],\) and compare your result with the value in Appendix D.

Use thermodynamic data from Appendix D to calculate values of \(K_{\mathrm{sp}}\) for the following sparingly soluble solutes: (a) \(\operatorname{AgBr} ;\) (b) \(\operatorname{CaSO}_{4} ;\) (c) \(\operatorname{Fe}(\text { OH })_{3}\). [Hint: Begin by writing solubility equilibrium expressions.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free