Chapter 19: Problem 27
The following standard Gibbs energy changes are given for \(25^{\circ} \mathrm{C}\) (1) \(\mathrm{N}_{2}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{g})\) \(\Delta G^{\circ}=-33.0 \mathrm{kJ}\) (2) \(4 \mathrm{NH}_{3}(\mathrm{g})+5 \mathrm{O}_{2}(\mathrm{g}) \longrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(1)\) \(\Delta G^{\circ}=-1010.5 \mathrm{kJ}\) (3) \(\mathrm{N}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{NO}(\mathrm{g})\) \(\Delta G^{\circ}=+173.1 \mathrm{kJ}\) (4) \(\mathrm{N}_{2}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{g})\) \(\Delta G^{\circ}=+102.6 \mathrm{kJ}\) (5) \(2 \mathrm{N}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{N}_{2} \mathrm{O}(\mathrm{g})\) \(\Delta G^{\circ}=+208.4 \mathrm{kJ}\) Combine the preceding equations, as necessary, to obtain \(\Delta G^{\circ}\) values for each of the following reactions. (a) \(\mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{g}) \quad \Delta G^{\circ}=?\) (b) \(2 \mathrm{H}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(1) \quad \Delta G^{\circ}=?\) (c) \(2 \mathrm{NH}_{3}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{H}_{2} \mathrm{O}(1)\) \(\Delta G^{\circ}=?\) Of reactions (a), (b), and (c), which would tend to go to completion at \(25^{\circ} \mathrm{C}\), and which would reach an equilibrium condition with significant amounts of all reactants and products present?