Chapter 19: Problem 28
The following standard Gibbs energy changes are given for \(25^{\circ} \mathrm{C}\) (1) \(\mathrm{SO}_{2}(\mathrm{g})+3 \mathrm{CO}(\mathrm{g}) \longrightarrow \operatorname{COS}(\mathrm{g})+2 \mathrm{CO}_{2}(\mathrm{g})\) \(\Delta G^{\circ}=-246.4 \mathrm{kJ}\) (2) \(\mathrm{CS}_{2}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \operatorname{COS}(\mathrm{g})+\mathrm{H}_{2} \mathrm{S}(\mathrm{g})\) \(\Delta G^{\circ}=-41.5 \mathrm{kJ}\) (3) \(\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{S}(\mathrm{g}) \longrightarrow \operatorname{COS}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{g})\) \(\Delta G^{\circ}=+1.4 \mathrm{kJ}\) (4) \(\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{g})\) \(\Delta G^{\circ}=-28.6 \mathrm{kJ}\) Combine the preceding equations, as necessary, to obtain \(\Delta G^{\circ}\) values for the following reactions. (a) \(\operatorname{COS}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow\) \(\begin{aligned} \mathrm{SO}_{2}(\mathrm{g})+\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{g}) & \Delta G^{\circ}=? \end{aligned}\) (b) \(\cos (g)+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow\) \(\mathrm{SO}_{2}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{g}) \quad \Delta G^{\circ}=?\) \(\left.+\quad \mathrm{H}_{\mathrm{O}} \mathrm{C}(\mathrm{d})=\mathrm{CO}_{-}^{\circ} \mathrm{G}\right)+\mathrm{H}_{-}^{-} \mathrm{S}(\mathrm{q})\) (c) \(\cos (\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{g})+\mathrm{H}_{2} \mathrm{S}(\mathrm{g})\) \(\Delta G^{\circ}=?\) Of reactions (a), (b), and (c), which is spontaneous in the forward direction when reactants and products are present in their standard states?