The following standard Gibbs energy changes are given for \(25^{\circ}
\mathrm{C}\)
(1) \(\mathrm{SO}_{2}(\mathrm{g})+3 \mathrm{CO}(\mathrm{g}) \longrightarrow
\operatorname{COS}(\mathrm{g})+2 \mathrm{CO}_{2}(\mathrm{g})\)
\(\Delta G^{\circ}=-246.4 \mathrm{kJ}\)
(2) \(\mathrm{CS}_{2}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})
\longrightarrow \operatorname{COS}(\mathrm{g})+\mathrm{H}_{2}
\mathrm{S}(\mathrm{g})\)
\(\Delta G^{\circ}=-41.5 \mathrm{kJ}\)
(3) \(\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{S}(\mathrm{g})
\longrightarrow \operatorname{COS}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{g})\)
\(\Delta G^{\circ}=+1.4 \mathrm{kJ}\)
(4) \(\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})
\longrightarrow \mathrm{CO}_{2}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{g})\)
\(\Delta G^{\circ}=-28.6 \mathrm{kJ}\)
Combine the preceding equations, as necessary, to obtain \(\Delta G^{\circ}\)
values for the following reactions.
(a) \(\operatorname{COS}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})
\longrightarrow\)
\(\begin{aligned} \mathrm{SO}_{2}(\mathrm{g})+\mathrm{CO}(\mathrm{g})+2
\mathrm{H}_{2}(\mathrm{g}) & \Delta G^{\circ}=? \end{aligned}\)
(b) \(\cos (g)+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow\)
\(\mathrm{SO}_{2}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{g})+3
\mathrm{H}_{2}(\mathrm{g}) \quad \Delta G^{\circ}=?\)
\(\left.+\quad \mathrm{H}_{\mathrm{O}}
\mathrm{C}(\mathrm{d})=\mathrm{CO}_{-}^{\circ}
\mathrm{G}\right)+\mathrm{H}_{-}^{-} \mathrm{S}(\mathrm{q})\)
(c) \(\cos (\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow
\mathrm{CO}_{2}(\mathrm{g})+\mathrm{H}_{2} \mathrm{S}(\mathrm{g})\)
\(\Delta G^{\circ}=?\)
Of reactions (a), (b), and (c), which is spontaneous in the forward direction
when reactants and products are present in their standard states?