Chapter 22: Problem 7
Use VSEPR theory to predict the probable geometric structures of (a) \(\mathrm{XeO}_{3} ;\) (b) \(\mathrm{XeO}_{4} ;\) (c) \(\mathrm{XeF}_{5}^{+}\).
Chapter 22: Problem 7
Use VSEPR theory to predict the probable geometric structures of (a) \(\mathrm{XeO}_{3} ;\) (b) \(\mathrm{XeO}_{4} ;\) (c) \(\mathrm{XeF}_{5}^{+}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeGive an appropriate formula for each of the following compounds: (a) calcium sulfate dihydrate; (b) hydrosulfuric acid; (c) sodium hydrogen sulfate; (d) disulfuric acid.
In water, \(\mathrm{O}^{2-}\) is a strong base. If \(50.0 \mathrm{mg}\) of \(\mathrm{Li}_{2} \mathrm{O}\) is dissolved in \(750.0 \mathrm{mL}\) of aqueous solution, what will be the pH of the solution?
Give a practical laboratory method that you might use to produce small quantities of the following gases and comment on any difficulties that might arise: (a) \(\mathrm{O}_{2} ;\) (b) \(\mathrm{NO} ;\) (c) \(\mathrm{H}_{2} ;\) (d) \(\mathrm{NH}_{3} ;\) (e) \(\mathrm{CO}_{2}\).
Use the following electrode potential diagram for basic solutions to classify each of the statements below as true or false. Assume standard conditions. $$\begin{aligned}\mathrm{SO}_{4}^{2-} \stackrel{-0.936 \mathrm{V}}{\longrightarrow} \mathrm{SO}_{3}^{2-} & \stackrel{-0.576 \mathrm{V}}{\longrightarrow} \\\& \mathrm{S}_{2} \mathrm{O}_{3}^{2-} \stackrel{-0.74 \mathrm{V}}{\longrightarrow} \mathrm{S} \stackrel{-0.476 \mathrm{V}}{\longrightarrow} \mathrm{S}^{2-}\end{aligned}$$ (a) Sulfate \(\left(\mathrm{SO}_{4}^{2-}\right)\) is a stronger oxidant than thiosulfate \(\left(\mathrm{S}_{2} \mathrm{O}_{3}^{2}\right)\) in basic solution. (b) \(S^{2-}\) can be used as a reducing agent in basic solutions. (c) \(\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\) is stable with respect to disproportionation to \(\mathrm{SO}_{3}^{2-}\) and \(\mathrm{S}\) in basic solution.
What mass of \(\mathrm{Na}_{2} \mathrm{SO}_{3}\) was present in a sample that required \(26.50 \mathrm{mL}\) of \(0.0510 \mathrm{M} \mathrm{KMnO}_{4}\) for its oxidation to \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) in an acidic solution? \(\mathrm{MnO}_{4}^{-}\) is reduced to \(\mathrm{Mn}^{2+}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.