Balance these equations for redox reactions occurring in basic solution. (a) \(\mathrm{CrO}_{4}^{2-}+\mathrm{S}_{2} \mathrm{O}_{4}^{2-} \longrightarrow \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{s})+\mathrm{SO}_{3}^{2-}\) (b) \(\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+\mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}+\mathrm{N}_{2}(\mathrm{g})\) (c) \(\operatorname{Fe}(\mathrm{OH})_{2}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{s})\) (d) \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{MnO}_{4}^{-} \longrightarrow\) \(\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{MnO}_{2}(\mathrm{s})\)

Short Answer

Expert verified
The balanced equations are (a) \(\mathrm{CrO}_{4}^{2-} + 3\mathrm{H}_2\mathrm{O} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{s}) + 5\mathrm{OH}^{-}\) and \(\mathrm{S}_2\mathrm{O}_4^{2-} + 2\mathrm{OH}^{-} \rightarrow 2\mathrm{SO}_3^{2-}+\mathrm{H}_2\mathrm{O}\), (b) \([\mathrm{Fe}(\mathrm{CN})_{6}]^{3-}+ \mathrm{N}_2\mathrm{H}_4 +2 \mathrm{OH}^{-}\rightarrow [\mathrm{Fe}(\mathrm{CN})_{6}]^{4-} + \mathrm{N}_2\mathrm{(g)}+ 4\mathrm{H}_2\mathrm{O}\), (c) \(\mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{s}) + \mathrm{O}_{2}(\mathrm{g})+\mathrm{H}_2\mathrm{O}\rightarrow \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{s})\), and (d) \(3\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} + \mathrm{MnO}_{4}^{-}+\mathrm{OH}^{-} \rightarrow 3\mathrm{CH}_{3} \mathrm{COO}^{-} + \mathrm{MnO}_{2}(\mathrm{s}) + 4\mathrm{H}_2\mathrm{O}\).

Step by step solution

01

Balancing the first equation

First, the individual half reactions for the redox reaction are identified. The two half reactions for the equation are \(\mathrm{CrO}_{4}^{2-}\) to \(\mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{s})\) and \(\mathrm{S}_{2} \mathrm{O}_{4}^{2-}\) to \(\mathrm{SO}_{3}^{2-}\). The half reactions are balanced separately by matching oxygen atoms with water molecules and hydrogen atoms with \(\mathrm{H}^{+}\) ions, and if necessary, matching the charges with electrons. Finally, the half equations are added together, cancelling out any same term from both sides of the reaction. So, the balanced equation is \(\mathrm{CrO}_{4}^{2-} + 3\mathrm{H}_2\mathrm{O} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{s}) + 5\mathrm{OH}^{-}\) and \(\mathrm{S}_2\mathrm{O}_4^{2-} + 2\mathrm{OH}^{-} \rightarrow 2\mathrm{SO}_3^{2-}+\mathrm{H}_2\mathrm{O}\).
02

Balancing the second equation

For the second equation, the half reactions are \([\mathrm{Fe}(\mathrm{CN})_{6}]^{3-}\) to \([\mathrm{Fe}(\mathrm{CN})_{6}]^{4-}\) and \(\mathrm{N}_2\mathrm{H}_4\) to \(\mathrm{N}_2\mathrm{(g)}\). There is no redox principle in the first half reaction equation thereby, balancing this equation with water molecules, hydrogen ions, and electrons form it into: \([\mathrm{Fe}(\mathrm{CN})_{6}]^{3-} \rightarrow [\mathrm{Fe}(\mathrm{CN})_{6}]^{4-} + e^{-}\). Balancing the second half reaction equation results in: \(\mathrm{N}_2\mathrm{H}_4 + 2 \mathrm{OH}^{-} \rightarrow \mathrm{N}_2\mathrm{(g)}+ 4\mathrm{H}_2\mathrm{O}\). And finally, the overall equation is found by combining the half reactions to give: \([\mathrm{Fe}(\mathrm{CN})_{6}]^{3-}+ \mathrm{N}_2\mathrm{H}_4 +2 \mathrm{OH}^{-}\rightarrow [\mathrm{Fe}(\mathrm{CN})_{6}]^{4-} + \mathrm{N}_2\mathrm{(g)}+ 4\mathrm{H}_2\mathrm{O}\).
03

Balancing the third equation

The half reactions for the third equation are \(\mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{s})\) to \(\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{s})\) and \(\mathrm{O}_2(\mathrm{g})\) to \(\mathrm{H}_2\mathrm{O}\). The final balanced equation is obtained as: \(\mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{s}) + \mathrm{O}_{2}(\mathrm{g})+\mathrm{H}_2\mathrm{O}\rightarrow \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{s})\).
04

Balancing the fourth equation

For the fourth equation, the half reactions are \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\) to \(\mathrm{CH}_{3} \mathrm{COO}^{-}\) and \(\mathrm{MnO}_{4}^{-}\) to \(\mathrm{MnO}_{2}(\mathrm{s})\). The final balanced equation is obtained as: \(3\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} + \mathrm{MnO}_{4}^{-}+\mathrm{OH}^{-} \rightarrow 3\mathrm{CH}_{3} \mathrm{COO}^{-} + \mathrm{MnO}_{2}(\mathrm{s}) + 4\mathrm{H}_2\mathrm{O}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Which of the following aqueous solutions has the highest concentration of \(\mathrm{K}^{+}\) ? (a) \(0.0850 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4};\) (b) a solution containing \(1.25 \mathrm{g} \mathrm{KBr} / 100 \mathrm{mL} ;\) (c) a solution having \(8.1 \mathrm{mg} \mathrm{K}^{+} / \mathrm{mL}\).

An unknown white solid consists of two compounds, each containing a different cation. As suggested in the illustration, the unknown is partially soluble in water. The solution is treated with \(\mathrm{NaOH}(\mathrm{aq})\) and yields a white precipitate. The part of the original solid that is insoluble in water dissolves in \(\mathrm{HCl}(\mathrm{aq})\) with the evolution of a gas. The resulting solution is then treated with \(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})\) and yields a white precipitate. (a) Is it possible that any of the cations \(M g^{2+}, C u^{2+}\) \(\mathrm{Ba}^{2+}, \mathrm{Na}^{+},\) or \(\mathrm{NH}_{4}^{+}\) were present in the original unknown? Explain your reasoning. (b) What compounds could be in the unknown mixture (that is, what anions might be present)?

How many milligrams of \(\mathrm{MgI}_{2}\) must be added to \(250.0 \mathrm{mL}\) of \(0.0876 \mathrm{M} \mathrm{KI}\) to produce a solution with \(\left[\mathrm{I}^{-}\right]=0.1000 \mathrm{M} ?\)

Balance these equations for disproportionation reactions. (a) $\mathrm{Cl}_{2}(\mathrm{g}) \longrightarrow \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}$ (basic solution) (b) $\mathrm{S}_{2} \mathrm{O}_{4}^{2-} \longrightarrow \mathrm{S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{HSO}_{3}^{-}$ (acidic solution)

What volume of \(0.248 \mathrm{M} \mathrm{CaCl}_{2}\) must be added to \(335 \mathrm{mL}\) of \(0.186 \mathrm{M} \mathrm{KCl}\) to produce a solution with a concentration of \(0.250 \mathrm{M} \mathrm{Cl}^{-2}\) Assume that the solution volumes are additive.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free