Balance these equations for disproportionation reactions. (a) $\mathrm{Cl}_{2}(\mathrm{g}) \longrightarrow \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}$ (basic solution) (b) $\mathrm{S}_{2} \mathrm{O}_{4}^{2-} \longrightarrow \mathrm{S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{HSO}_{3}^{-}$ (acidic solution)

Short Answer

Expert verified
The balanced equations for each reaction are: \n Reaction a: \n \(\mathrm{Cl}_{2}(\mathrm{g}) \rightarrow 5\mathrm{Cl}^{-} + \mathrm{ClO}_{3}^{-}\) \n Reaction b: \n \(3\mathrm{S}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{S}_{2} \mathrm{O}_{3}^{2-} + \mathrm{HSO}_{3}^{-}\)

Step by step solution

01

Step 1

Assign the oxidation numbers for each species in the given reactions \n\n Reaction a: \n Chlorine in \(\mathrm{Cl}_{2}(\mathrm{g})\) has an oxidation number of 0. In \(\mathrm{Cl}^{-}\), it has an oxidation number of -1 and in \(\mathrm{ClO}_{3}^{-}\), it has an oxidation number of +5. \n\n Reaction b: \n Sulfur in \(\mathrm{S}_{2} \mathrm{O}_{4}^{2-}\) has an oxidation state of +4, in \(\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\), it has an oxidation number of +2 and in \(\mathrm{HSO}_{3}^{-}\) it has an oxidation number of +4.
02

Step 2

Create and balance half reactions for both oxidation and reduction \n\n Reaction a: \n Oxidation: \(\mathrm{Cl}\to\mathrm{ClO}_{3}^{-}+6e^{-}\) \n Reduction: \(\mathrm{Cl}+e^{-}\to\mathrm{Cl}^{-}\) \n\n Reaction b: \n Oxidation: \(\mathrm{S}_{2} \mathrm{O}_{4}^{2-} - 2e^{-}\to\mathrm{HSO}_{3}^{-}\) \n Reduction: \(\mathrm{S}_{2} \mathrm{O}_{4}^{2-}\to\mathrm{S}_{2} \mathrm{O}_{3}^{2-}+e^{-}\)
03

Step 3

Balance the number of electrons lost and gained in each half-reaction \n\n Reaction a: \n Multiply the reduction half-reaction by 6 and the oxidation half-reaction by 1 and then add them up: \n 6\(\mathrm{Cl} + e^{-} \to 6 \mathrm{Cl}^{-}\) \n \(\mathrm{Cl} \to \mathrm{ClO}_{3}^{-}+6e^{-}\) \n The final balanced equation for reaction a in basic solution is: \n \(\mathrm{Cl}_{2}(\mathrm{g}) \rightarrow 6 \mathrm{Cl}^{-} + \mathrm{ClO}_{3}^{-}\) \n\n Reaction b: \n Multiply the reduction half-reaction by 2 and the oxidation half-reaction by 1 and then add them up: \n 2 \(\mathrm{S}_{2} \mathrm{O}_{4}^{2-} \to 2 \mathrm{S}_{2} \mathrm{O}_{3}^{2-}+2e^{-}\) \n \(\mathrm{S}_{2} \mathrm{O}_{4}^{2-} - 2e^{-} \to \mathrm{HSO}_{3}^{-} \) \n The final balanced equation for reaction b in acidic solution is: \n 3 \(\mathrm{S}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{S}_{2} \mathrm{O}_{3}^{2-} + \mathrm{HSO}_{3}^{-}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Assuming the volumes are additive, what is the \(\left[\mathrm{Cl}^{-}\right]\) in a solution obtained by mixing \(225 \mathrm{mL}\) of \(0.625 \mathrm{M}\) \(\mathrm{KCl}\) and \(615 \mathrm{mL}\) of \(0.385 \mathrm{M} \mathrm{MgCl}_{2} ?\)

Balance these equations for redox reactions in basic solution. (a) \(\mathrm{MnO}_{2}(\mathrm{s})+\mathrm{ClO}_{3}^{-} \longrightarrow \mathrm{MnO}_{4}^{-}+\mathrm{Cl}^{-}\) (b) \(\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{s})+\mathrm{OCl}^{-} \longrightarrow \mathrm{FeO}_{4}^{2-}+\mathrm{Cl}^{-}\) (c) \(\mathrm{ClO}_{2} \longrightarrow \mathrm{ClO}_{3}^{-}+\mathrm{Cl}\) (d) \(\mathrm{Ag}(\mathrm{s})+\mathrm{CrO}_{4}^{2-} \rightarrow \mathrm{Ag}^{+}+\mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{s})\)

A sample of battery acid is to be analyzed for its sulfuric acid content. A \(1.00 \mathrm{mL}\) sample weighs \(1.239 \mathrm{g}\). This \(1.00 \mathrm{mL}\) sample is diluted to \(250.0 \mathrm{mL}\), and \(10.00 \mathrm{mL}\) of this diluted acid requires \(32.44 \mathrm{mL}\) of \(0.00498 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}\) for its titration. What is the mass percent of \(\mathrm{H}_{2} \mathrm{SO}_{4}\) in the battery acid? (Assume that complete ionization and neutralization of the \(\mathrm{H}_{2} \mathrm{SO}_{4}\) occurs.)

A \(0.4324 \mathrm{g}\) sample of a potassium hydroxide-lithium hydroxide mixture requires \(28.28 \mathrm{mL}\) of \(0.3520 \mathrm{M} \mathrm{HCl}\) for its titration to the equivalence point. What is the mass percent lithium hydroxide in this mixture?

To precipitate \(\mathrm{Zn}^{2+}\) from \(\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}),\) add (a) \(\mathrm{NH}_{4} \mathrm{Cl} ;\) (b) \(\mathrm{MgBr}_{2} ;\) (c) \(\mathrm{K}_{2} \mathrm{CO}_{3} ;\) (d) \(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free