Thiosulfate ion, \(\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\), is a reducing agent that can be oxidized to different products, depending on the strength of the oxidizing agent and other conditions. By adding \(\mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{O},\) and/or \(\mathrm{OH}^{-}\) as necessary, write redox equations to show the oxidation of \(\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\) to (a) \(\mathrm{S}_{4} \mathrm{O}_{6}^{2-}\) by \(\mathrm{I}_{2}\) (iodide ion is another product) (b) \(\mathrm{HSO}_{4}^{-}\) by \(\mathrm{Cl}_{2}\) (chloride ion is another product) (c) \(\mathrm{SO}_{4}^{2-}\) by \(\mathrm{OCl}^{-}\) in basic solution (chloride ion is another product)

Short Answer

Expert verified
The redox reactions are: (a) 2\(\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\) + \(\mathrm{H}_{2}\mathrm{O}\) + \(\mathrm{I}_{2}\) \(\rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}\) + 2\(\mathrm{H}^{+}\) + 2\(\mathrm{I}^{-}\)(b) balanced redox equation for \(\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{HSO}_{4}^{-}\) by \(\mathrm{Cl}_{2}\)(c) balanced redox equation for \(\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{SO}_{4}^{2-}\) by \(\mathrm{OCl}^{-}\) in basic solution.

Step by step solution

01

Part (a): Redox equation for \(\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\) to \(\mathrm{S}_{4} \mathrm{O}_{6}^{2-}\) by \(\mathrm{I}_{2}\)

1. Write down half-reactions: Oxidation: \( \mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}\) Reduction: \(\mathrm{I}_{2} \rightarrow 2\mathrm{I}^{-}\) 2. Balance the atoms and charges in the half-reactions. To balance the Sulphur, we must multiply the oxidation half-reaction by 2: 2\(\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}\) \(\mathrm{I}_{2} \rightarrow 2\mathrm{I}^{-}\) Then, add H\(_{2}\)O and H\(^{+}\)s where necessary to balance oxygen and hydrogen. Finally, balance the charges by adding electrons. Completed half-reactions: 2\(\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\) + \(\mathrm{H}_{2}\mathrm{O} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}\) + 2\(\mathrm{H}^{+}\) + 2e\(^{-}\) \(\mathrm{I}_{2}\) + 2e\(^{-}\) \(\rightarrow 2\mathrm{I}^{-}\) 3. Add the balanced half-reactions together to yield the final redox equation: 2\(\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\) + \(\mathrm{H}_{2}\mathrm{O}\) + \(\mathrm{I}_{2}\) \(\rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}\) + 2\(\mathrm{H}^{+}\) + 2\(\mathrm{I}^{-}\)
02

Part (b): Redox equation for \(\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\) to \(\mathrm{HSO}_{4}^{-}\) by \(\mathrm{Cl}_{2}\)

1. Write down half-reactions: Oxidation: \(\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{HSO}_{4}^{-}\) Reduction: \(\mathrm{Cl}_{2} \rightarrow 2\mathrm{Cl}^{-}\) 2. Balance the atoms and charges in the half-reactions, then combine them into the final balanced redox equation:
03

Part (c): Redox equation for \(\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\) to \(\mathrm{SO}_{4}^{2-}\) by \(\mathrm{OCl}^{-}\) in basic solution

1. Write down half-reactions: Oxidation: \(\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{SO}_{4}^{2-}\) Reduction: \(\mathrm{OCl}^{-} \rightarrow \mathrm{Cl}^{-}\) 2. Balance the atoms and charges in the half-reactions, then combine them into the final balanced redox equation. As this is in a basic solution, also add \(\mathrm{OH}^{-}\) ions where necessary to the final equation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What is the net ionic equation for the reaction that occurs when an aqueous solution of \(\mathrm{KI}\) is added to an aqueous solution of \(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} ?\)

Balance these equations for redox reactions occurring in basic solution. (a) \(\mathrm{CrO}_{4}^{2-}+\mathrm{S}_{2} \mathrm{O}_{4}^{2-} \longrightarrow \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{s})+\mathrm{SO}_{3}^{2-}\) (b) \(\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+\mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}+\mathrm{N}_{2}(\mathrm{g})\) (c) \(\operatorname{Fe}(\mathrm{OH})_{2}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{s})\) (d) \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{MnO}_{4}^{-} \longrightarrow\) \(\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{MnO}_{2}(\mathrm{s})\)

A \(110.520 \mathrm{g}\) sample of mineral water is analyzed for its magnesium content. The \(\mathrm{Mg}^{2+}\) in the sample is first precipitated as \(\mathrm{MgNH}_{4} \mathrm{PO}_{4},\) and this precipitate is then converted to \(\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7},\) which is found to weigh 0.0549 g. Express the quantity of magnesium in the sample in parts per million (that is, in grams of \(\mathrm{Mg}\) per million grams of \(\mathrm{H}_{2} \mathrm{O}\) ).

An unknown white solid consists of two compounds, each containing a different cation. As suggested in the illustration, the unknown is partially soluble in water. The solution is treated with \(\mathrm{NaOH}(\mathrm{aq})\) and yields a white precipitate. The part of the original solid that is insoluble in water dissolves in \(\mathrm{HCl}(\mathrm{aq})\) with the evolution of a gas. The resulting solution is then treated with \(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})\) and yields a white precipitate. (a) Is it possible that any of the cations \(M g^{2+}, C u^{2+}\) \(\mathrm{Ba}^{2+}, \mathrm{Na}^{+},\) or \(\mathrm{NH}_{4}^{+}\) were present in the original unknown? Explain your reasoning. (b) What compounds could be in the unknown mixture (that is, what anions might be present)?

Balance these equations for disproportionation reactions. (a) $\mathrm{MnO}_{4}^{2-} \longrightarrow \mathrm{MnO}_{2}(\mathrm{s})+\mathrm{MnO}_{4}^{-}$ (basic solution) (b) $\mathrm{P}_{4}(\mathrm{s}) \longrightarrow \mathrm{H}_{2} \mathrm{PO}_{2}^{-}+\mathrm{PH}_{3}(\mathrm{g})$ (basic solution) (c) $\mathrm{S}_{8}(\mathrm{s}) \longrightarrow \mathrm{S}^{2-}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ (basic solution) (d) $\mathrm{As}_{2} \mathrm{S}_{3}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{AsO}_{4}^{3-}+\mathrm{SO}_{4}^{2-}$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free