Chapter 5: Problem 52
How many milliliters of \(0.0844 \mathrm{MBa}(\mathrm{OH})_{2}\) are required to titrate \(50.00 \mathrm{mL}\) of \(0.0526 \mathrm{M} \mathrm{HNO}_{3} ?\)
Chapter 5: Problem 52
How many milliliters of \(0.0844 \mathrm{MBa}(\mathrm{OH})_{2}\) are required to titrate \(50.00 \mathrm{mL}\) of \(0.0526 \mathrm{M} \mathrm{HNO}_{3} ?\)
All the tools & learning materials you need for study success - in one app.
Get started for freeBalance these equations for redox reactions occurring in acidic solution. (a) $\mathrm{P}_{4}(\mathrm{s})+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{NO}(\mathrm{g})$ (b) $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{SO}_{4}^{2-}+\mathrm{Mn}^{2+}$ (c) $\mathrm{HS}^{-}+\mathrm{HSO}_{3}^{-} \longrightarrow \mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ (d) $\mathrm{Fe}^{3+}+\mathrm{NH}_{3} \mathrm{OH}^{+} \longrightarrow \mathrm{Fe}^{2+}+\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$
Balance these equations for reactions in acidic solution. (a) $\mathrm{IBr}+\mathrm{BrO}_{3}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{IO}_{3}^{-}+\mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{O}$ (b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{3}+\mathrm{Sn} \longrightarrow$ $\mathrm{NH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{Sn}^{2+}$ (c) $\mathrm{As}_{2} \mathrm{S}_{3}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{S}+\mathrm{NO}$ (d) $\mathrm{H}_{5} \mathrm{IO}_{6}+\mathrm{I}_{2} \longrightarrow \mathrm{IO}_{3}^{-}+\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}$ (e) $\mathrm{S}_{2} \mathrm{F}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{S}_{8}+\mathrm{H}_{2} \mathrm{S}_{4} \mathrm{O}_{6}+\mathrm{HF}$
When aqueous sodium carbonate, \(\mathrm{Na}_{2} \mathrm{CO}_{3}\), is treated with dilute hydrochloric acid, HCl, the products are sodium chloride, water, and carbon dioxide gas. What is the net ionic equation for this reaction?
Balance these equations for redox reactions occurring in basic solution. (a) \(\mathrm{CrO}_{4}^{2-}+\mathrm{S}_{2} \mathrm{O}_{4}^{2-} \longrightarrow \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{s})+\mathrm{SO}_{3}^{2-}\) (b) \(\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+\mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}+\mathrm{N}_{2}(\mathrm{g})\) (c) \(\operatorname{Fe}(\mathrm{OH})_{2}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{s})\) (d) \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{MnO}_{4}^{-} \longrightarrow\) \(\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{MnO}_{2}(\mathrm{s})\)
Assuming the volumes are additive, what is the \(\left[\mathrm{NO}_{3}^{-}\right]\) in a solution obtained by mixing \(275 \mathrm{mL}\) of \(0.283 \mathrm{M} \mathrm{KNO}_{3}, 328 \mathrm{mL}\) of \(0.421 \mathrm{M} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2},\) and \(784 \mathrm{mL}\) of \(\mathrm{H}_{2} \mathrm{O} ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.