Chapter 7: Problem 144
Construct a concept map encompassing the ideas behind the first law of thermodynamics.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 7: Problem 144
Construct a concept map encompassing the ideas behind the first law of thermodynamics.
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine \(\Delta H^{\circ}\) for this reaction from the data below. \(\mathrm{N}_{2} \mathrm{H}_{4}(1)+2 \mathrm{H}_{2} \mathrm{O}_{2}(1) \longrightarrow \mathrm{N}_{2}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}(1)\) $$\begin{array}{r} \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{N}_{2}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ \Delta H^{\circ}=-622.2 \mathrm{kJ} \end{array}$$ $$\mathrm{H}_{2}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H^{\circ}=-285.8 \mathrm{kJ}$$ $$\mathrm{H}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}_{2}(1) \quad \Delta H^{\circ}=-187.8 \mathrm{kJ}$$
What will be the final temperature of the water in an insulated container as the result of passing \(5.00 \mathrm{g}\) of steam, \(\mathrm{H}_{2} \mathrm{O}(\mathrm{g}),\) at \(100.0^{\circ} \mathrm{C}\) into \(100.0 \mathrm{g}\) of water at \(25.0^{\circ} \mathrm{C} ?\left(\Delta H_{\mathrm{vap}}^{\circ}=40.6 \mathrm{kJ} / \mathrm{mol} \mathrm{H}_{2} \mathrm{O}\right)\).
What mass of ice can be melted with the same quantity of heat as required to raise the temperature of \(3.50 \mathrm{mol} \mathrm{H}_{2} \mathrm{O}(1)\) by \(50.0^{\circ} \mathrm{C} ?\left[\Delta H_{\text {fusion }}^{\circ}=6.01 \mathrm{kJ} / \mathrm{mol}\right.\) \(\left.\mathrm{H}_{2} \mathrm{O}(\mathrm{s})\right]\)
Compressed air in aerosol cans is used to free electronic equipment of dust. Does the air do any work as it escapes from the can?
Use Hess's law and the following data $$\begin{aligned} \mathrm{CH}_{4}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \\ \Delta H^{\circ}=-802 \mathrm{kJ} \end{aligned}$$ $$\begin{aligned} \mathrm{CH}_{4}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{g}) & \\ \Delta H^{\circ}=&+247 \mathrm{kJ} \end{aligned}$$ $$\begin{aligned} \mathrm{CH}_{4}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{g}) & \\ \Delta H^{\circ}=&+247 \mathrm{kJ} \end{aligned}$$ $$\begin{aligned} \mathrm{CH}_{4}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{g}) & \\ \Delta H^{\circ}=&+206 \mathrm{kJ} \end{aligned}$$ to determine \(\Delta H^{\circ}\) for the following reaction, an important source of hydrogen gas $$\mathrm{CH}_{4}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{g})$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.