Given the following information: $$\frac{1}{2} \mathrm{N}_{2}(\mathrm{g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{g}) \longrightarrow \mathrm{NH}_{3}(\mathrm{g})\quad\quad\quad\quad\Delta H_{1}^{\circ}$$ $$\mathrm{NH}_{3}(\mathrm{g})+\frac{5}{4} \mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{NO}(\mathrm{g})+\frac{3}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H_{2}^{\circ}$$ $$\mathrm{H}_{2}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\quad\quad\quad\Delta H_{3}^{\circ}$$ Determine \(\Delta H^{\circ}\) for the following reaction, expressed in terms of \(\Delta H_{1}^{\circ}, \Delta H_{2}^{\circ},\) and \(\Delta H_{3}^{\circ}\) $$\mathrm{N}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{NO}(\mathrm{g}) \quad \Delta H^{\circ}=?$$

Short Answer

Expert verified
The overall enthalpy change for the desired reaction, in terms of \(\Delta H_{1}^{\circ}, \Delta H_{2}^{\circ},\) and \(\Delta H_{3}^{\circ}\), is \(\Delta H = \Delta H_{1}^{\circ} - 2 \Delta H_{2}^{\circ} + 3 \Delta H_{3}^{\circ}\).

Step by step solution

01

Writing the desired equation

Identify the desired equation: \(\mathrm{N}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{NO}(\mathrm{g})\)
02

Modifying the given equations

Transform the given equations into forms that will add in such a way to yield the desired equation. For the first equation, nothing needs to be done. For the second equation, it should be reversed and multiplied by \(2\) to produce \(-2 \mathrm{NH}_{3}(\mathrm{g}) - \frac{5}{2} \mathrm{O}_{2}(\mathrm{g}) \longrightarrow -2 \mathrm{NO}(\mathrm{g}) - 3 \mathrm{H}_{2}\mathrm{O}(\mathrm{l})\). The third equation should be multiplied by \(3\) to yield \(3 \mathrm{H}_{2}(\mathrm{g}) + \frac{3}{2} \mathrm{O}_{2}(\mathrm{g}) \longrightarrow 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\)
03

Addition of manipulated equations & enthalpies

Add the three modified equations: \(\frac{1}{2} \mathrm{N}_{2}(\mathrm{g}) + \frac{3}{2} \mathrm{H}_{2}(\mathrm{g}) - 2 \mathrm{NH}_{3}(\mathrm{g}) + 3 \mathrm{H}_{2}(\mathrm{g}) \longrightarrow \mathrm{NH}_{3}(\mathrm{g}) - 2 \mathrm{NO}(\mathrm{g}) - 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) + 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \). Cancel terms on both sides to obtain the desired equation. Correspondingly, add the enthalpies with modifications. The overall \(\Delta H = \Delta H_{1}^{\circ} - 2 \Delta H_{2}^{\circ} + 3 \Delta H_{3}^{\circ} \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the final temperature that results when (a) a 12.6 g sample of water at \(22.9^{\circ} \mathrm{C}\) absorbs \(875 \mathrm{J}\) of heat; (b) a 1.59 kg sample of platinum at \(78.2^{\circ} \mathrm{C}\) gives off \(1.05 \mathrm{kcal}\) of heat \(\left(\mathrm{sp} \mathrm{ht} \text { of } \mathrm{Pt}=0.032 \mathrm{cal} \mathrm{g}^{-1}\right.\) \(\left.^{\circ} \mathrm{C}^{-1}\right)\).

Use Hess's law to determine \(\Delta H^{\circ}\) for the reaction $$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{g}), \text { given that }$$ $$\begin{array}{l} \text { C(graphite) }+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{CO}(\mathrm{g}) \\ &\left.\qquad \Delta H^{\circ}=-110.54 \mathrm{k} \mathrm{J}\right] \end{array}$$ $$\begin{aligned} &\text { C(graphite) }+\mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{g})\\\ &&\Delta H^{\circ}=-393.51 \mathrm{kJ} \end{aligned}$$

Construct a concept map encompassing the ideas behind the first law of thermodynamics.

How much heat, in kilojoules, is evolved in the complete combustion of (a) \(1.325 \mathrm{g} \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{g})\) at \(25^{\circ} \mathrm{C}\) and \(1 \mathrm{atm} ;\) (b) \(28.4 \mathrm{L} \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{g})\) at \(\mathrm{STP} ;(\mathrm{c})\) \(12.6 \mathrm{LC}_{4} \mathrm{H}_{10}(\mathrm{g})\) at \(23.6^{\circ} \mathrm{C}\) and \(738 \mathrm{mmHg} ?\) Assume that the enthalpy change for the reaction does not change significantly with temperature or pressure. The complete combustion of butane, \(\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{g}),\) is represented by the equation $$\begin{array}{r} \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{g})+\frac{13}{2} \mathrm{O}_{2}(\mathrm{g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{g})+5 \mathrm{H}_{2} \mathrm{O}(1) \\ \Delta H^{\circ}=-2877 \mathrm{kJ} \end{array}$$

Brass has a density of \(8.40 \mathrm{g} / \mathrm{cm}^{3}\) and a specific heat of \(0.385 \mathrm{Jg}^{-1}\) \(^{\circ} \mathrm{C}^{-1} . \mathrm{A} 15.2 \mathrm{cm}^{3}\) piece of brass at an initial temperature of \(163^{\circ} \mathrm{C}\) is dropped into an insulated container with \(150.0 \mathrm{g}\) water initially at \(22.4^{\circ} \mathrm{C}\) What will be the final temperature of the brass-water mixture?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free