Use Hess's law and the following data $$\begin{aligned} \mathrm{CH}_{4}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \\ \Delta H^{\circ}=-802 \mathrm{kJ} \end{aligned}$$ $$\begin{aligned} \mathrm{CH}_{4}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{g}) & \\ \Delta H^{\circ}=&+247 \mathrm{kJ} \end{aligned}$$ $$\begin{aligned} \mathrm{CH}_{4}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{g}) & \\ \Delta H^{\circ}=&+247 \mathrm{kJ} \end{aligned}$$ $$\begin{aligned} \mathrm{CH}_{4}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{g}) & \\ \Delta H^{\circ}=&+206 \mathrm{kJ} \end{aligned}$$ to determine \(\Delta H^{\circ}\) for the following reaction, an important source of hydrogen gas $$\mathrm{CH}_{4}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{g})$$

Short Answer

Expert verified
The value of \( \Delta H^{\circ} \) for the reaction \( \mathrm{CH}_{4}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{g}) \) is \( +607 \) kJ.

Step by step solution

01

Identify the Target Reaction

The reaction for which we need to determine the change in heat reaction (\( \Delta H^{\circ} \)) is: \( \mathrm{CH}_{4}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{g}) \)
02

Manipulate the given reactions

To obtain the desired reaction, the given reactions need to be manipulated in such a way that, when added, they result in the target reaction. Starting with the reaction \( \mathrm{CH}_{4}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \), with \( \Delta H^{\circ} = -802 \) kJ, we should reverse it and halve it to get \( \frac{1}{2} \mathrm{CO}_{2}(\mathrm{g}) + \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \frac{1}{2} \mathrm{CH}_{4}(\mathrm{g}) + \mathrm{O}_{2}(\mathrm{g}) \), with \( \Delta H^{\circ} = 401 \) kJ. Then, considering reaction \( \mathrm{CH}_{4}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{g}) \), with \( \Delta H^{\circ} = +206 \) kJ, we should use it as given.
03

Sum the manipulated reactions

When we add these two manipulated reactions, we get the desired reaction. If we add up the enthalpy change of these two reactions, we will get the \( \Delta H^{\circ} \) for the desired reaction. After calculation, \( \Delta H^{\circ} = 401 \) kJ (for the first reaction) + \( +206 \) kJ (for the second reaction) = \( +607 \) kJ.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The standard molar enthalpy of formation of \(\mathrm{CO}_{2}(\mathrm{g})\) is equal to (a) \(0 ;\) (b) the standard molar heat of combustion of graphite; (c) the sum of the standard molar enthalpies of formation of \(\mathrm{CO}(\mathrm{g})\) and \(\mathrm{O}_{2}(\mathrm{g})\) (d) the standard molar heat of combustion of \(\mathrm{CO}(\mathrm{g})\)

Acetylene \(\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\) torches are used in welding. How much heat (in kJ) evolves when 5.0 L of \(C_{2} \mathrm{H}_{2}\) \(\left(d=1.0967 \mathrm{kg} / \mathrm{m}^{3}\right)\) is mixed with a stoichiometric amount of oxygen gas? The combustion reaction is $$\begin{array}{r} \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{g})+\frac{5}{2} \mathrm{O}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ \Delta H^{\circ}=-1299.5 \mathrm{kJ} \end{array}$$

Construct a concept map encompassing the ideas behind the first law of thermodynamics.

The standard heats of combustion \(\left(\Delta H^{\circ}\right)\) per mole of 1,3-butadiene, \(\mathrm{C}_{4} \mathrm{H}_{6}(\mathrm{g}) ;\) butane, \(\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{g}) ;\) and \(\mathrm{H}_{2}(\mathrm{g})\) are \(-2540.2,-2877.6,\) and \(-285.8 \mathrm{kJ},\) respectively. Use these data to calculate the heat of hydrogenation of 1,3-butadiene to butane. $$\mathrm{C}_{4} \mathrm{H}_{6}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{g}) \longrightarrow \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{g}) \quad \Delta H^{\circ}=?$$ [Hint: Write equations for the combustion reactions. In each combustion, the products are \(\mathrm{CO}_{2}(\mathrm{g})\) and \(\left.\mathrm{H}_{2} \mathrm{O}(1) .\right]\)

Construct a concept map to show the interrelationships between path-dependent and pathindependent quantities in thermodynamics.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free