Write balanced equations and solubility product expressions for the solubility equilibria of these compounds: (a) \(\mathrm{CuBr},\) (b) \(\mathrm{ZnC}_{2} \mathrm{O}_{4},\) (c) \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\) (d) \(\mathrm{Hg}_{2} \mathrm{Cl}_{2}\) (e) \(\mathrm{AuCl}_{3}\) (f) \(\mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2}\).

Short Answer

Expert verified
The solubility product expressions are \[K_{sp}=[\mathrm{Cu}^{+}][\mathrm{Br}^{-}]\], \[K_{sp}=[\mathrm{Zn}^{2+}][\mathrm{C}_{2} \mathrm{O}_{4}^{2-}]^{2}\], \[K_{sp}=[\mathrm{Ag}^{+}]^{2}[\mathrm{CrO}_{4}^{2-}]\], \[K_{sp}=[\mathrm{Hg}_{2}^{2+}][\mathrm{Cl}^{-}]^{2}\], \[K_{sp}=[\mathrm{Au}^{3+}][\mathrm{Cl}^{-}]^{3}\] and \[K_{sp}=[\mathrm{Mn}^{2+}]^{3}[\mathrm{PO}_{4}^{3-}]^{2}\].

Step by step solution

01

Establishing the General Equilibrium Equation for Solubility

The general equation for solubility equilibrium is: \(\mathrm{AB}_{(s)} \rightleftharpoons \mathrm{A}^{+}_{(aq)} + \mathrm{B}^{-}_{(aq)}\). Balancing is not needed here since every reactant is reacting in a ratio of 1:1.
02

Solubility Equilibrium for CuBr

Here's the balanced solubility equation for \(\mathrm{CuBr}\): \(\mathrm{CuBr}_{(s)} \rightleftharpoons \mathrm{Cu}^{+}_{(aq)} + \mathrm{Br}^{-}_{(aq)}\). The solubility product expression is: \[K_{sp}=[\mathrm{Cu}^{+}][\mathrm{Br}^{-}]\].
03

Solubility Equilibrium for ZnC2O4

The balanced solubility equation for \(\mathrm{ZnC}_{2} \mathrm{O}_{4}\) is: \(\mathrm{ZnC}_{2} \mathrm{O}_{4(s)} \rightleftharpoons \mathrm{Zn}^{2+}_{(aq)} + 2\mathrm{C}_{2} \mathrm{O}_{4}^{2-}_{(aq)}\). The solubility product expression is: \[K_{sp}=[\mathrm{Zn}^{2+}][\mathrm{C}_{2} \mathrm{O}_{4}^{2-}]^{2}\].
04

Solubility Equilibrium for Ag2CrO4

The balanced solubility equation for \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\) is: \(\mathrm{Ag}_{2} \mathrm{CrO}_{4(s)} \rightleftharpoons 2\mathrm{Ag}^{+}_{(aq)} + \mathrm{CrO}_{4}^{2-}_{(aq)}\). The solubility product expression is: \[K_{sp}=[\mathrm{Ag}^{+}]^{2}[\mathrm{CrO}_{4}^{2-}]\].
05

Solubility Equilibrium for Hg2Cl2

The balanced solubility equation for \(\mathrm{Hg}_{2} \mathrm{Cl}_{2}\) is: \(\mathrm{Hg}_{2} \mathrm{Cl}_{2(s)} \rightleftharpoons \mathrm{Hg}_{2}^{2+}_{(aq)} + 2\mathrm{Cl}^{-}_{(aq)}\). The solubility product expression is: \[K_{sp}=[\mathrm{Hg}_{2}^{2+}][\mathrm{Cl}^{-}]^{2}\].
06

Solubility Equilibrium for AuCl3

The balanced solubility equation for \(\mathrm{AuCl}_{3}\) is: \(\mathrm{AuCl}_{3(s)} \rightleftharpoons \mathrm{Au}^{3+}_{(aq)} + 3\mathrm{Cl}^{-}_{(aq)}\). The solubility product expression is: \[K_{sp}=[\mathrm{Au}^{3+}][\mathrm{Cl}^{-}]^{3}\].
07

Solubility Equilibrium for Mn3(PO4)2

The balanced solubility equation for \(\mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2}\) is: \(\mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)} \rightleftharpoons 3\mathrm{Mn}^{2+}_{(aq)} + 2\mathrm{PO}_{4}^{3-}_{(aq)}\). The solubility product expression is: \[K_{sp}=[\mathrm{Mn}^{2+}]^{3}[\mathrm{PO}_{4}^{3-}]^{2}\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free