Balance the following redox equations by the halfreaction method: (a) \(\mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{O}\) (in basic solution) (b) \(\mathrm{Bi}(\mathrm{OH})_{3}+\mathrm{SnO}_{2}^{2-} \longrightarrow \mathrm{SnO}_{3}^{2-}+\mathrm{Bi}\) (in basic solution) (c) \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{CO}_{2}\) (in acidic solution) (d) \(\mathrm{ClO}_{3}^{-}+\mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}+\mathrm{ClO}_{2}\) (in acidic solution)

Short Answer

Expert verified
The balanced redox equations are: (a) \( \mathrm{2Mn^{2+} + 2H_2O_2 \rightarrow 2MnO_2 + 4H_2O} \), (b) \( \mathrm{2Bi(OH)_3 + 2SnO_2^{2-} \rightarrow 2SnO_3^{2-} + 2Bi + 3H_2O} \), (c) \( \mathrm{Cr_2O_7^{2-} + 6C_2O_4^{2-} \rightarrow 2Cr^{3+} + 6CO_2 + 14H^+} \), (d) \( \mathrm{ClO_3^{-} + 5Cl^- + 6H^+ \rightarrow 3Cl_2 + ClO_2 + 3H_2O} \).

Step by step solution

01

Identify the Oxidation and Reduction Half-Reactions for each equation

In every redox reaction, there's a substance that's being reduced and another one that's being oxidized. For the given equations, the substances being reduced or oxidized are: (a) \( \mathrm{Mn^{2+}} \) is being oxidized to \( \mathrm{MnO_2} \), (b) \( \mathrm{Bi(OH)_3} \) is being reduced to \( \mathrm{Bi} \), (c) \( \mathrm{Cr_2O_7^{2-}} \) is being reduced to \( \mathrm{Cr^{3+}} \), (d) \( \mathrm{ClO_3^{-}} \) is being reduced to \( \mathrm{ClO_2} \).
02

Balance each half-reaction for mass and charge

For each half-reaction, first balance the atoms other than \( \mathrm{H} \) and \( \mathrm{O} \), then add \( \mathrm{H_2O} \) to balance \( \mathrm{O} \) atoms, and if needed, add \( \mathrm{H^+} \) to balance \( \mathrm{H} \) atoms. Lastly, add electrons \( \mathrm{e^{-}} \) to balance the charge: (a) \( \mathrm{Mn^{2+} \rightarrow MnO_2 + 4H^+ + 2e^-} \), (b) \( \mathrm{Bi(OH)_3 + 3e^- \rightarrow Bi + 3OH^-} \), (c) \( \mathrm{Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O} \), (d) \( \mathrm{ClO_3^{-} + 2H^+ + e^- \rightarrow ClO_2 + H_2O} \).
03

Balance the overall redox equations

Multiply the half-reactions by suitable factors so that the number of electrons in the two half-reactions are equal. Then, add the two half-reactions together and simplify to get the final balanced redox equations: (a) \( \mathrm{2Mn^{2+} + 2H_2O_2 \rightarrow 2MnO_2 + 4H_2O} \), (b) \( \mathrm{2Bi(OH)_3 + 2SnO_2^{2-} \rightarrow 2SnO_3^{2-} + 2Bi + 3H_2O} \), (c) \( \mathrm{Cr_2O_7^{2-} + 6C_2O_4^{2-} \rightarrow 2Cr^{3+} + 6CO_2 + 14H^+} \), (d) \( \mathrm{ClO_3^{-} + 5Cl^- + 6H^+ \rightarrow 3Cl_2 + ClO_2 + 3H_2O} \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free