Fill in the blanks in these radioactive decay series: (a) \(^{232} \mathrm{Th} \stackrel{\alpha}{\longrightarrow}\) _______ \(\stackrel{\beta}{\longrightarrow}\) ________ \(\stackrel{\beta}{\longrightarrow}{ }^{228} \mathrm{Th}\) (b) \({ }^{235} \mathrm{U} \stackrel{\alpha}{\longrightarrow}\) ________ \(\stackrel{\beta}{\longrightarrow}\) _________ \(\stackrel{\alpha}{\longrightarrow}^{227} \mathrm{Ac}\) (c) _______ \(\stackrel{\alpha}{\longrightarrow}{ }^{233} \mathrm{~Pa} \stackrel{\beta}{\longrightarrow}\) ___________ \(\stackrel{\alpha}{\longrightarrow}\) ________.

Short Answer

Expert verified
The filled decay series are: (a) \(^{232} \mathrm{Th} \stackrel{\alpha}{\longrightarrow}{ }^{228} \mathrm{Ra}\)\(\stackrel{\beta}{\longrightarrow}{ }^{228} \mathrm{Fr}\) \(\stackrel{\beta}{\longrightarrow}{ }^{228} \mathrm{Th}\), (b) \({ }^{235} \mathrm{U} \stackrel{\alpha}{\longrightarrow}{ }^{231} \mathrm{Th}\) \(\stackrel{\beta}{\longrightarrow}{ }^{231} \mathrm{Pa}\) \(\stackrel{\alpha}{\longrightarrow}^{227} \mathrm{Ac}\), (c) \({ }^{237} \mathrm{Th} \stackrel{\alpha}{\longrightarrow}{ }^{233} \mathrm{~Pa} \stackrel{\beta}{\longrightarrow}{ }^{233} \mathrm{Th}\) \(\stackrel{\alpha}{\longrightarrow}{ }^{229} \mathrm{Fr}\)

Step by step solution

01

Solve for (a)

In alpha decay, atomic number decreases by 2 and atomic mass decreases by 4. Thus, after the alpha decay of Thorium 232, we get Radon 228.After the beta decay, the atomic number increases by one and we get Francium 228.After the second beta decay, we again increase the atomic number by one so we finally get Thorium 228. Hence, the series is: \(^{232} \mathrm{Th} \stackrel{\alpha}{\longrightarrow}{ }^{228} \mathrm{Ra}\)\(\stackrel{\beta}{\longrightarrow}{ }^{228} \mathrm{Fr}\) \(\stackrel{\beta}{\longrightarrow}{ }^{228} \mathrm{Th}\)
02

Solve for (b)

Using the same logic we infer that after alpha decay from Uranium 235, we get Thorium 231.After the beta decay, the atomic number increases by one so, we get Protactinium 231.After another alpha decay, we get Actinium 227. Hence, the series is: \({ }^{235} \mathrm{U} \stackrel{\alpha}{\longrightarrow}{ }^{231} \mathrm{Th}\) \(\stackrel{\beta}{\longrightarrow}{ }^{231} \mathrm{Pa}\) \(\stackrel{\alpha}{\longrightarrow}^{227} \mathrm{Ac}\)
03

Solve for (c)

The series starts with an alpha decay. So we increase the atomic number by 2 and the mass by 4 to the Pa-233, obtaining Thorium 237.The Thorium 237 then undergoes a beta decay, transforming into Protactinium 237. Lastly, after another alpha decay, the result is Francium 233. Hence, the series is: \({ }^{237} \mathrm{Th} \stackrel{\alpha}{\longrightarrow}{ }^{233} \mathrm{~Pa} \stackrel{\beta}{\longrightarrow}{ }^{233} \mathrm{Th}\) \(\stackrel{\alpha}{\longrightarrow}{ }^{229} \mathrm{Fr}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free