Chapter 21: Problem 58
The nucleus of nitrogen- 18 lies above the stability belt. Write an equation for a nuclear reaction by which nitrogen- 18 can achieve stability.
Chapter 21: Problem 58
The nucleus of nitrogen- 18 lies above the stability belt. Write an equation for a nuclear reaction by which nitrogen- 18 can achieve stability.
All the tools & learning materials you need for study success - in one app.
Get started for freeHow does a Geiger counter work?
Complete these nuclear equations and identify \(\mathrm{X}\) in each case: (a) \({ }_{12}^{26} \mathrm{Mg}+{ }_{1}^{1} \mathrm{p} \longrightarrow{ }_{2}^{4} \alpha+\mathrm{X}\) (b) \({ }_{27}^{59} \mathrm{Co}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{27}^{60} \mathrm{Co}+\mathrm{X}\) (c) \({ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{36}^{94} \mathrm{Kr}+{ }_{56}^{139} \mathrm{Ba}+3 \mathrm{X}\) (d) \({ }_{24}^{53} \mathrm{Cr}+{ }_{2}^{4} \alpha \longrightarrow{ }_{0}^{1} \mathrm{n}+\mathrm{X}\) (e) \({ }_{8}^{20} \mathrm{O} \longrightarrow{ }_{9}^{20} \mathrm{~F}+\mathrm{X}\)
Fill in the blanks in these radioactive decay series: (a) \(^{232} \mathrm{Th} \stackrel{\alpha}{\longrightarrow}\) _______ \(\stackrel{\beta}{\longrightarrow}\) ________ \(\stackrel{\beta}{\longrightarrow}{ }^{228} \mathrm{Th}\) (b) \({ }^{235} \mathrm{U} \stackrel{\alpha}{\longrightarrow}\) ________ \(\stackrel{\beta}{\longrightarrow}\) _________ \(\stackrel{\alpha}{\longrightarrow}^{227} \mathrm{Ac}\) (c) _______ \(\stackrel{\alpha}{\longrightarrow}{ }^{233} \mathrm{~Pa} \stackrel{\beta}{\longrightarrow}\) ___________ \(\stackrel{\alpha}{\longrightarrow}\) ________.
Nuclear waste disposal is one of the major concerns of the nuclear industry. In choosing a safe and stable environment to store nuclear wastes, consideration must be given to the heat released during nuclear decay. As an example, consider the \(\beta\) decay of \({ }^{90} \mathrm{Sr}\) \((89.907738 \mathrm{amu})\) $$ { }_{38}^{90} \mathrm{Sr} \longrightarrow{ }_{39}^{90} \mathrm{Y}+{ }_{-1}^{0} \beta \quad t_{\frac{1}{2}}=28.1 \mathrm{yr} $$ The \({ }^{90} \mathrm{Y}(89.907152 \mathrm{amu})\) further decays as follows: $$ { }_{39}^{90} \mathrm{Y} \longrightarrow{ }_{40}^{90} \mathrm{Zr}+{ }_{-1}^{0} \beta \quad t_{\frac{1}{2}}=64 \mathrm{~h} $$ Zirconium-90 (89.904703 amu) is a stable isotope. (a) Use the mass defect to calculate the energy released (in joules) in each of the preceding two decays. (The mass of the electron is \(5.4857 \times\) \(10^{-4}\) amu. ( b) Starting with 1 mole of \({ }^{90}\) Sr, calculate the number of moles of \(9^{9}\) Sr that will decay in a year. (c) Calculate the amount of heat released (in kilojoules) corresponding to the number of moles of \({ }^{90} \mathrm{Sr}\) decayed to \({ }^{90} \mathrm{Zr}\) in \((\mathrm{b})\)
Complete these nuclear equations and identify \(X\) in each case: (a) \({ }^{135}{ }_{53} \mathrm{I} \longrightarrow{ }_{54}^{135} \mathrm{Xe}+\mathrm{X}\) (b) \({ }_{19}^{40} \mathrm{~K} \longrightarrow{ }_{-1}^{0} \beta+\mathrm{X}\) (c) \({ }_{27}^{59} \mathrm{Co}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{25}^{56} \mathrm{Mn}+\mathrm{X}\) (d) \({ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{40}^{99} \mathrm{Zr}+{ }_{52}^{135} \mathrm{Te}+2 \mathrm{X}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.