Determine the amount of heat (in kJ) given off when \(1.26 \times 10^{4} \mathrm{~g}\) of \(\mathrm{NO}_{2}\) are produced according to the equation $$ \begin{aligned} 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow & 2 \mathrm{NO}_{2}(g) \\ \Delta H &=-114.6 \mathrm{~kJ} / \mathrm{mol} \end{aligned} $$

Short Answer

Expert verified
The total amount of heat evolved when \(1.26 \times 10^{4} g\) of \(NO_{2}\) is produced is given by the result of the calculation in Step 3.

Step by step solution

01

Convert grams of \(NO_{2}\) to moles

Using the molar mass of \(NO_{2}\) (46.01 g/mol), number of moles of \(NO_{2}\) can be calculated as \(1.26 \times 10^{4}~ g \,NO_{2} \times \frac{1 \,mol\, NO_{2}}{46.01 \,g\, NO_{2}}\).
02

Apply the stoichiometry of the reaction and enthalpy change

From the balanced chemical reaction, it can be seen that \(2 \,mol \,of \, NO_{2}\) are produced for every \(-114.6 \,kJ\) of heat evolved. Therefore, the heat evolution for the calculated number of moles of \(NO_{2}\) can be calculated as \( \text{Moles} \,of\, NO_{2} \times \frac{-114.6 \,kJ}{2 \,mol\, NO_{2}}\).
03

Calculation

Calculate the total amount of heat evolved by multiplying the moles of\(NO_{2}\) (from Step 1) and the heat release per mole of \(NO_{2}\) (determined in Step 2).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the work done in joules when 1.0 mole of water vaporizes at 1.0 atm and \(100^{\circ} \mathrm{C}\). Assume that the volume of liquid water is negligible compared with that of steam at \(100^{\circ} \mathrm{C}\), and ideal gas behavior.

From a thermochemical point of view, explain why a carbon dioxide fire extinguisher or water should not be used on a magnesium fire.

From the following data, $$ \begin{array}{c} \mathrm{C} \text { (graphite) }+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}(g) \\ \Delta H_{\mathrm{rxn}}^{\circ}=-393.5 \mathrm{~kJ} / \mathrm{mol} \\\ \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l) \\ \Delta H_{\mathrm{rxn}}^{\circ}=-285.8 \mathrm{~kJ} / \mathrm{mol} \\ 2 \mathrm{C}_{2} \mathrm{H}_{6}(g)+7 \mathrm{O}_{2}(g) \longrightarrow 4 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) \\ \Delta H_{\mathrm{rxn}}^{\circ}=-3119.6 \mathrm{~kJ} / \mathrm{mol} \end{array} $$ calculate the enthalpy change for the reaction $$ 2 \mathrm{C}(\text { graphite })+3 \mathrm{H}_{2}(g) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(g) $$

From these data, $$ \begin{aligned} \mathrm{S}(\text { rhombic })+\mathrm{O}_{2}(g) \longrightarrow \mathrm{SO}_{2}(g) \\ \Delta H_{\mathrm{rxn}}^{\circ} &=-296.06 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{S}(\text { monoclinic })+\mathrm{O}_{2}(g) & \longrightarrow \mathrm{SO}_{2}(g) \\ \Delta H_{\mathrm{rxn}}^{\circ} &=-296.36 \mathrm{~kJ} / \mathrm{mol} \end{aligned} $$ calculate the enthalpy change for the transformation $$ S \text { (rhombic) } \longrightarrow \mathrm{S} \text { (monoclinic) } $$ (Monoclinic and rhombic are different allotropic forms of elemental sulfur.)

You are given the following data: $$ \begin{array}{c} \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{H}(g) \quad \Delta H^{\circ}=436.4 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{Br}_{2}(g) \longrightarrow 2 \mathrm{Br}(g) \quad \Delta H^{\circ}=192.5 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{H}_{2}(g)+\mathrm{Br}_{2}(g) \longrightarrow 2 \mathrm{HBr}(g) \\ \Delta H^{\circ}=-72.4 \mathrm{~kJ} / \mathrm{mol} \end{array} $$ Calculate \(\Delta H^{\circ}\) for the reaction $$ \mathrm{H}(g)+\operatorname{Br}(g) \longrightarrow \operatorname{HBr}(g) $$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free