Chapter 14: Problem 36
What is the solubility product for copper \((\mathrm{I})\) sulfide, \(\mathrm{Cu}_{2} \mathrm{S},\) given that the solubility of \(\mathrm{Cu}_{2} \mathrm{S}\) is \(8.5 \times 10^{-17} \mathrm{M} ?\)
Chapter 14: Problem 36
What is the solubility product for copper \((\mathrm{I})\) sulfide, \(\mathrm{Cu}_{2} \mathrm{S},\) given that the solubility of \(\mathrm{Cu}_{2} \mathrm{S}\) is \(8.5 \times 10^{-17} \mathrm{M} ?\)
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat changes in conditions would favor the reactants in the following equilibrium? $$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{SO}_{3}(g) \quad \Delta H=-198 \mathrm{kJ}$$
Develop a model that shows the concept of equilibrium. Be sure that your model includes the impact of Le Chatelier's principle on equilibrium.
What is an equilibrium constant?
Determine the value of the equilibrium constant for each reaction below assuming that the equilibrium concentrations are as specified. $$\text {(a.)}A+B \rightleftarrows C ;[A]=2.0 ;[B]=3.0 ;[C]=4.0$$ $$\begin{array}{l}{\text { b. } \mathrm{D}+2 \mathrm{E} \rightleftarrows \mathrm{F}+3 \mathrm{G} ;[\mathrm{D}]=1.5 ;[\mathrm{E}]=2.0} \\\ {[\mathrm{F}]=1.8 ;[\mathrm{G}]=1.2}\end{array}$$ $$\mathrm{c} \cdot \mathrm{N}_{2}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{g}) ;\left[\mathrm{N}_{2}\right]=0.45\( \)\left[\mathrm{H}_{2}\right]=0.14 ;\left[\mathrm{NH}_{3}\right]=0.62$$
Methanol, \(\mathrm{CH}_{3} \mathrm{OH},\) can be prepared in the presence of a catalyst by the reaction of \(\mathrm{H}_{2}\) and \(\mathrm{CO}\) at high temperatures according to the following equation: $$\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}(g)$$ What is the concentration of \(\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})\) in moles per liter if the concentration of \(\mathrm{H}_{2}=0.080 \mathrm{mol} / \mathrm{L}\) , the concentration of \(\mathrm{CO}=0.025 \mathrm{mol} / \mathrm{L},\) and \(K_{e q}=290\) at 700 \(\mathrm{K} ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.