Chapter 16: Problem 30
Why do reptiles move more sluggishly in cold weather?
Chapter 16: Problem 30
Why do reptiles move more sluggishly in cold weather?
All the tools & learning materials you need for study success - in one app.
Get started for freeExplain how a graph can be useful in defining and measuring the rate of a chemical reaction.
Explain how to calculate a reaction rate from concentration-versus-time data.
Suggest ways of measuring concentration in a reaction mixture.
Using chemical terminology, explain the purpose of food refrigeration.
The graphing calculator can run a program that can tell you the order of a chemical reaction, provided you indicate the reactant concentrations and reaction rates for two experiments involving the same reaction. Go to Appendix C. If you are using a TI-83 Plus, you can download the program RXNORDER and run the application as directed. If you are using another calculator, your teacher will provide you with key-strokes and data sets to use. At the prompts, enter the reactant concentrations and reaction rates. Run the program as needed to find the order of the following reactions. (All rates are given in M/s.) a. \(2 \mathrm{N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)\) \(\mathrm{N}_{2} \mathrm{O}_{5} :\) conc. \(1=0.025 \mathrm{M} ;\) conc. \(2=0.040 \mathrm{M}\) rate \(1=8.1 \times 10^{-5} ;\) rate \(2=1.3 \times 10^{-4}\) b. \(2 \mathrm{NO}_{2}(g) \rightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)\) \(\mathrm{NO}_{2} : \mathrm{conc.} 1=0.040 \mathrm{M} ; \mathrm{conc} .2=0.080 \mathrm{M}\) rate \(1=0.0030 ;\) rate \(2=0.012\) c. \(2 \mathrm{H}_{2} \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{O}_{2}(g)\) \(\mathrm{H}_{2} \mathrm{O}_{2} :\) conc. \(1=0.522 \mathrm{M} ;\) conc. \(2=0.887 \mathrm{M}\) rate \(1=1.90 \times 10^{-4} ;\) rate \(2=3.23 \times 10^{-4}\) d. \(2 \mathrm{NOBr}(g) \rightarrow 2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g)\) NOBr: conc. \(1=1.27 \times 10^{-4} \mathrm{M} ;\) conc. \(2=\) \(4.04 \times 10^{-4} \mathrm{M}\) rate \(1=6.26 \times 10^{-5} ;\) rate \(2=6.33 \times 10^{-4}\) e. \(2 \mathrm{HI}(g) \rightarrow \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g)\) HI: conc. \(1=4.18 \times 10^{-4} \mathrm{M} ;\) conc. \(2=\) \(8.36 \times 10^{-4} \mathrm{M}\) rate \(1=3.86 \times 10^{-5} ;\) rate \(2=1.54 \times 10^{-4}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.