Chapter 2: Problem 134
(a) 4 -chloro- 1 -methylcyclohexane (b) trans 4 -chloro- 1 -methylcyclohexane (c) trans 1 -chloro-4-methylcyclohexane (d) trans 1 -methyl-4-chlorocyclohexane
Chapter 2: Problem 134
(a) 4 -chloro- 1 -methylcyclohexane (b) trans 4 -chloro- 1 -methylcyclohexane (c) trans 1 -chloro-4-methylcyclohexane (d) trans 1 -methyl-4-chlorocyclohexane
All the tools & learning materials you need for study success - in one app.
Get started for freeA reagent that can form a hydrocarbon with a Grignard reagent is (a) \(\mathrm{HCOOC}_{2} \mathrm{H}_{5}\) (b) \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\) (c) \(\mathrm{CH}_{3} \mathrm{COCH}_{3}\) (d) \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COC}_{6} \mathrm{H}_{5}\)
This section contains multiple choice questions. Each question has 4 choices (a), (b), (c) and (d), out of which ONLY ONE is correct. A compound with the molecular formula, \(\mathrm{C}_{4} \mathrm{H}_{6}\), does not exist in cis or trans form. It does not produce a precipitate with ammoniacal \(\mathrm{AgNO}_{3}\) solution. The compound as such is optically inactive but a monohalogen derivative can be optically active. The compound is (a) \(\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}\) (b) \(\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{C}=\mathrm{CH}_{2}\) (c) \(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}\) (d)
\(\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}+\mathrm{CH}_{3} \mathrm{MgI} \longrightarrow(\mathrm{A})+\mathrm{CH}_{4}\) \((\mathrm{A})+\mathrm{CH}_{3} \mathrm{I} \longrightarrow(\mathrm{B})+\mathrm{MgI}_{2}\) (A) and (B) are (a) \(\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{MgI}\) and \(\mathrm{CH}_{4}\) (b) \(\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}\) and \(\mathrm{CH}_{4}\) (c) \(\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{MgI}\) and \(\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}\) (d) \(\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{I}\) and
Identify the name of reactions (A) - (D) given below (A) \(2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I} \stackrel{\text { Na /ether }}{\longrightarrow} \mathrm{C}_{4} \mathrm{H}_{10}+2 \mathrm{NaI}\) (B) (C) \(\mathrm{R}_{2} \mathrm{CuLi} \stackrel{\mathrm{R}^{\prime} \mathrm{X}}{\longrightarrow} \mathrm{R}-\mathrm{R}\) (D) \(\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{3} \stackrel{\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}}{\longrightarrow} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}\) (a) (A) Ulmann reaction (B) Electrolytic cleavage (C) Grignard reaction (D) Wolff-kishner reduction (b) (A) Wurtz reaction (B) Kolbe's electrolysis (C) Corey-House synthesis (D) Clemmensen reaction (c) (A) Wurtz reaction (B) Decarboxylation (C) Frankland reaction (D) Clemmensen reduction (d) (A) Wurtz-Fittig reaction (B) Decarboxylative coupling (C) Corey-House synthesis (D) Clemmensen reduction
When 3-methyl-2-butanol reacts with HBr, the expected product is 2-bromo-3-methyl-butane. But the actual product formed is 2 -bromo-2-methylbutane. Account for this.
What do you think about this solution?
We value your feedback to improve our textbook solutions.