Chapter 2: Problem 7
What are the products formed when buta-1, 3 -diene is treated with HBr in \(1: 1\) molar proportion? Explain the formation of the products.
Chapter 2: Problem 7
What are the products formed when buta-1, 3 -diene is treated with HBr in \(1: 1\) molar proportion? Explain the formation of the products.
All the tools & learning materials you need for study success - in one app.
Get started for freeHI does not exhibit peroxide effect because (a) HI is a reducing agent. (b) the iodine free radicals formed recombine readily to form the iodine molecule. (c) the bond energy of HI is very high that it does not undergo homolytic fission to give iodine radicals. (d) Free radical reactions work well when both the propagation steps are endothermic.
\(\mathrm{HBr}\) reacts with \(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{OCH}_{3}\) in the absence of peroxides to give mainly (a) \(\mathrm{BrCH}_{2} \mathrm{CHO}\) and \(\mathrm{CH}_{3} \mathrm{OH}\) (b) \(\mathrm{BrCH}_{2}-\mathrm{CH}_{2}-\mathrm{OCH}_{3}\) (c) \(\mathrm{H}_{3} \mathrm{C}-\mathrm{CHBr}-\mathrm{OCH}_{3}\) (d) \(\mathrm{CH}_{3} \mathrm{CHO}\) and \(\mathrm{CH}_{3} \mathrm{Br}\)
Which group or atom in each of the following pairs gets priority according to CIP rules used for assigning \(\mathrm{R}\) and \(\mathrm{S}\) configuration for chiral molecules? (a) \(-\mathrm{CH}_{2} \mathrm{OH}\) or \(-\mathrm{CH}_{2} \mathrm{Cl}\) (b) \(-\mathrm{CH}=\mathrm{CH}_{2}\) or \(-\mathrm{CH}_{2} \mathrm{CH}_{3}(\mathrm{c})-\mathrm{NH}_{2}\) or \(-\mathrm{OH}\) (d) \(-\mathrm{CH}_{2} \mathrm{OH}\) or \(-\mathrm{CHO}\) Choose from the options given below \(\begin{array}{llll}\text { (a) } \mathrm{A}:-\mathrm{CH}_{2} \mathrm{OH}, & \mathrm{B}:-\mathrm{CH}=\mathrm{CH}_{2}, & \mathrm{C}:-\mathrm{NH}_{2}, & \mathrm{D}:-\mathrm{CHO}\end{array}\) \(\begin{array}{llll}\text { (b) } \mathrm{A}:-\mathrm{CH}_{2} \mathrm{Cl}, & \mathrm{B}:-\mathrm{CH}=\mathrm{CH}_{2}, & \mathrm{C}:-\mathrm{OH}, & \mathrm{D}:-\mathrm{CHO}\end{array}\) \(\begin{array}{llll}\text { (c) } \mathrm{A}:-\mathrm{CH}_{2} \mathrm{OH}, & \mathrm{B}:-\mathrm{CH}_{2} \mathrm{CH}_{3}, & \mathrm{C}:-\mathrm{NH}_{2}, & \mathrm{D}:-\mathrm{CHO}\end{array}\) \(\begin{array}{llll}\text { (d) } \mathrm{A}:-\mathrm{CH}_{2} \mathrm{Cl}, & \mathrm{B}:-\mathrm{CH}_{2}-\mathrm{CH}_{3}, & \mathrm{C}:-\mathrm{OH}, & \mathrm{D}:-\mathrm{CH}_{2} \mathrm{OH}\end{array}\)
Alkanes and alkenes can be prepared by (a) Wurtz reaction (b) Williamson synthesis (c) Dehydrohalogenation (d) Kolbe's electrolysis
A reaction that does not lead to an alkene is (a) Kolbe's electrolysis (b) \(\alpha\) -elimination (c) Wittig reaction (d) dehalogenation
What do you think about this solution?
We value your feedback to improve our textbook solutions.