Consider the reaction: \(2 \mathrm{NO}(g)+2 \mathrm{H}_{2}(g) \rightarrow\)
\(\mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)\)
Initial concentrations and rates for this reaction are given in the table
below.
$$\begin{array}{|c|c|c|c|}
\hline {\text { Experiment }} & {\begin{array}{c}
\text { Initial concentration } \\
\text { (mol/L) } \\
\text { [NO] }
\end{array}} & \begin{array}{c}
\text { Initial rate of } \\
\text { [ } \mathbf{H}_{2} \text { ] }
\end{array} & \begin{array}{c}
\text { formation of } \mathbf{N}_{2} \\
(\mathbf{m o l} / \mathbf{L} \text { min } \mathbf{)}
\end{array} \\
\hline 1 & 0.0060 & 0.0010 & 1.8 \times 10^{-4} \\
2 & 0.0060 & 0.0020 & 3.6 \times 10^{-4} \\
3 & 0.0010 & 0.0060 & 0.30 \times 10^{-4} \\
4 & 0.0020 & 0.0060 & 1.2 \times 10^{-4} \\
\hline
\end{array}$$
(a) From the data given, determine the order for each of the reactants,
\(\mathrm{NO}\) and \(\mathrm{H}_{2}\), show your reasoning, and write the overall
rate law for the reaction.
(b) Calculate the value of the rate constant, \(k\), for the reaction. Include
units.
(c) For experiment 2, calculate the concentration of NO remaining when exactly
one-half of the original amount of \(\mathrm{H}_{2}\) has been consumed.
(d) The following sequence of elementary steps is a proposed mechanism for the
reaction.
I. \(\mathrm{NO}+\mathrm{NO} \rightarrow \mathrm{N}_{2} \mathrm{O}_{2}\)
II. \(\quad \mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \rightarrow
\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \mathrm{O}\)
III. \(\quad \mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \rightarrow
\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}\)
Based on the data present, explain why the first step cannot be the rate
determining step.