Given the rate data below from a series of kinetics experiments, determine the orders for the following reaction, and state the overall order of the reaction: \(\mathrm{H}_{2} \mathrm{O}_{2}(a q)+3 \mathrm{I}^{-}(a q)+2 \mathrm{H}^{+}(a q) \rightarrow \mathrm{I}_{3}^{-}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)\) $$\begin{array}{cccc} \text { Experiment }\left[\mathbf{H}_{2} \mathrm{O}_{2}\right] & {\left[\mathbf{I}^{-}\right]} & {\left[\mathbf{H}^{+}\right]} & \text {Rate }(\mathbf{M} / \mathbf{s}) \\ \hline 1 & 0.010 \mathrm{M} & 0.010 \mathrm{M} & 0.00050 \mathrm{M} & 1.15 \times 10^{-6} \\ 2 & 0.020 \mathrm{M} & 0.010 \mathrm{M} & 0.00050 \mathrm{M} & 2.30 \times 10^{-6} \\ 3 & 0.010 \mathrm{M} & 0.020 \mathrm{M} & 0.00050 \mathrm{M} & 2.30 \times 10^{-6} \\ 4 & 0.010 \mathrm{M} & 0.010 \mathrm{M} & 0.00100 \mathrm{M} & 1.15 \times 10^{-6} \end{array}$$

Short Answer

Expert verified
The reaction orders for each reactant are as follows: \(x = 1\) for H2O2, \(y = 1\) for I-, and \(z = 0\) for H+. The overall order of the reaction is 2.

Step by step solution

01

Compare rates of Experiment 1 and Experiment 2

Here, the concentration of I- and H+ are unchanged, allowing us to find the order with respect to H2O2: \(\frac{Rate_2}{Rate_1} = \frac{k[\mathrm{H}_{2}\mathrm{O}_{2}]_2^x[\mathrm{I}^-]_2^y[\mathrm{H}^+]_2^z}{k[\mathrm{H}_{2}\mathrm{O}_{2}]_1^x[\mathrm{I}^-]_1^y[\mathrm{H}^+]_1^z}\) Step 2: Solve for x
02

Calculate reaction order for H2O2

Plugging in the values from the table, we get: \(\frac{2.30\times10^{-6}}{1.15\times10^{-6}} = \frac{[\mathrm{H}_{2}\mathrm{O}_{2}]_2^x}{[\mathrm{H}_{2}\mathrm{O}_{2}]_1^x}\) Solving for x, we find x = 1. Step 3: Pick two experiment pairs for I-
03

Compare rates of Experiment 1 and Experiment 3

Here, the concentration of H2O2 and H+ are unchanged, allowing us to find the order with respect to I-: \(\frac{Rate_3}{Rate_1} = \frac{k[\mathrm{H}_{2}\mathrm{O}_{2}]_3^x[\mathrm{I}^-]_3^y[\mathrm{H}^+]_3^z}{k[\mathrm{H}_{2}\mathrm{O}_{2}]_1^x[\mathrm{I}^-]_1^y[\mathrm{H}^+]_1^z}\) Step 4: Solve for y
04

Calculate reaction order for I-

Plugging in the values from the table, we get: \(\frac{2.30\times10^{-6}}{1.15\times10^{-6}} = \frac{[\mathrm{I}^-]_3^y}{[\mathrm{I}^-]_1^y}\) Solving for y, we find y = 1. Step 5: Pick two experiment pairs for H+
05

Compare rates of Experiment 1 and Experiment 4

Here, the concentration of H2O2 and I- are unchanged, allowing us to verify the order with respect to H+: \(\frac{Rate_4}{Rate_1} = \frac{k[\mathrm{H}_{2}\mathrm{O}_{2}]_4^x[\mathrm{I}^-]_4^y[\mathrm{H}^+]_4^z}{k[\mathrm{H}_{2}\mathrm{O}_{2}]_1^x[\mathrm{I}^-]_1^y[\mathrm{H}^+]_1^z}\) Step 6: Solve for z
06

Verify reaction order for H+

Plugging in the values from the table, we get: \(\frac{1.15\times10^{-6}}{1.15\times10^{-6}} = \frac{[\mathrm{H}^+]_4^z}{[\mathrm{H}^+]_1^z}\) Since the rates are equal, z must be 0. Step 7: Calculate the overall order
07

Determine the overall order of the reaction

Overall order is the sum of x, y, and z: Overall order = 1 + 1 + 0 = 2

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free