Which of the following reactions is described by the equilibrium constant expression \(K_{\mathrm{eq}}=\frac{[\mathrm{A}]^{2} \times[\mathrm{B}]^{3}}{[\mathrm{C}]^{3} \times[\mathrm{D}]^{2}}\) (a) \(\mathrm{A}_{2}+\mathrm{B}_{3} \rightleftarrows \mathrm{C}_{3}+\mathrm{D}_{2}\) (b) \(2 \mathrm{~A}+3 \mathrm{~B} \rightleftarrows 3 \mathrm{C}+2 \mathrm{D}\) (c) \(3 \mathrm{C}+2 \mathrm{D} \rightleftarrows 2 \mathrm{~A}+3 \mathrm{~B}\) (d) \(A^{2}+B^{3} \rightleftarrows C^{3}+D^{2}\) (e) \(2 \mathrm{C}+3 \mathrm{D} \rightleftarrows 3 \mathrm{~A}+2 \mathrm{~B}\)

Short Answer

Expert verified
The correct balanced chemical equation that matches the given equilibrium constant expression \(K_{\mathrm{eq}}=\frac{[\mathrm{A}]^{2} \times[\mathrm{B}]^{3}}{[\mathrm{C}]^{3} \times[\mathrm{D}]^{2}}\) is option (b): \(2 \mathrm{~A}+3 \mathrm{~B} \rightleftarrows 3 \mathrm{C}+2 \mathrm{D}\).

Step by step solution

01

Analyze Option (a)

We can compare the equilibrium expression for option (a) with the given equilibrium constant expression: $K_{\mathrm{eq}}=\frac{[\mathrm{A}]^{2} \times[\mathrm{B}]^{3}}{[\mathrm{C}]^{3} \times[\mathrm{D}]^{2}}$ Option (a): $\mathrm{A}_{2}+\mathrm{B}_{3} \rightleftarrows \mathrm{C}_{3}+\mathrm{D}_{2}$ The stoichiometric coefficients in option (a) are not matching the powers of the concentrations in the given equilibrium expression. Therefore, option (a) is incorrect.
02

Analyze Option (b)

We can compare the equilibrium expression for option (b) with the given equilibrium constant expression. $K_{\mathrm{eq}}=\frac{[\mathrm{A}]^{2} \times[\mathrm{B}]^{3}}{[\mathrm{C}]^{3} \times[\mathrm{D}]^{2}}$ Option (b): \(2 \mathrm{~A}+3 \mathrm{~B} \rightleftarrows 3 \mathrm{C}+2 \mathrm{D}\) The stoichiometric coefficients in option (b) match the powers of the concentrations in the given equilibrium expression. Therefore, option (b) is correct.
03

Analyze the Other Options (c), (d), and (e) for Confirmation

We can perform a quick analysis of the other options to confirm that option (b) is the correct answer. Option (c): \(3 \mathrm{C}+2 \mathrm{D} \rightleftarrows 2 \mathrm{~A}+3 \mathrm{~B}\) Option (d): \(A^{2}+B^{3} \rightleftarrows C^{3}+D^{2}\) Option (e): \(2 \mathrm{C}+3 \mathrm{D} \rightleftarrows 3 \mathrm{~A}+2 \mathrm{~B}\) None of these options have the stoichiometric coefficients matching the powers of the concentrations in the given equilibrium expression. This confirms that option (b) is the correct answer.
04

Conclusion

Based on our analysis, the equilibrium constant expression \(K_{\mathrm{eq}}=\frac{[\mathrm{A}]^{2} \times[\mathrm{B}]^{3}}{[\mathrm{C}]^{3} \times[\mathrm{D}]^{2}}\) corresponds to the balanced chemical equation given in option (b): \(2 \mathrm{~A}+3 \mathrm{~B} \rightleftarrows 3 \mathrm{C}+2 \mathrm{D}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free