Chapter 2: Problem 197
How many significant figures are there in each number: (a) \(5.300 \times 10^{-2}\) (b) \(3.2 \times 10^{5}\) (c) \(0.00890 \times 10^{-4}\) (d) \(7.9600000 \times 10^{10}\) (e) \(8.030 \times 10^{21}\)
Chapter 2: Problem 197
How many significant figures are there in each number: (a) \(5.300 \times 10^{-2}\) (b) \(3.2 \times 10^{5}\) (c) \(0.00890 \times 10^{-4}\) (d) \(7.9600000 \times 10^{10}\) (e) \(8.030 \times 10^{21}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA student takes three measurements of the mass of an object. If the actual mass is \(8.54 \mathrm{~g}\), indicate whether each set of measurements is precise but not accurate, accurate but not precise, both accurate and precise, or neither accurate nor precise: (a) \(6.38 \mathrm{~g}, 9.23 \mathrm{~g}, 4.36 \mathrm{~g}\) (b) \(8.53 \mathrm{~g}, 8.59 \mathrm{~g}, 8.55 \mathrm{~g}\) (c) \(9.53 \mathrm{~g}, 8.54 \mathrm{~g}, 7.54 \mathrm{~g}\) (d) \(6.25 \mathrm{~g}, 6.27 \mathrm{~g}, 6.26 \mathrm{~g}\)
Convert to cal \(/ \mathrm{g} \cdot{ }^{\circ} \mathrm{C}:\) (a) \(1.04 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\) (the specific heat of nitrogen gas) (b) \(0.84 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\) (the specific heat of carbon dioxide gas)
Write each number in standard notation: (a) \(1.79 \times 10^{-2}\) (b) \(8.76 \times 10^{-9}\) (c) \(4.88 \times 10^{10}\) (d) \(7.52 \times 10^{1}\) (e) \(8.37 \times 10^{\circ}\) (f) \(4.184 \times 10^{4}\)
A \(2.50-g\) piece of wood is burned in a calorimeter that contains \(0.200 \mathrm{~kg}\) of water. The burning causes the water temperature to increase from \(22.1^{\circ} \mathrm{C}\) to \(28.7^{\circ} \mathrm{C}\). How much heat energy is released in joules? What is the energy content of the wood in joules per gram of wood?
Do the following calculations and express each answer in scientific notation: (a) \(\left(5.03 \times 10^{2}\right)+\left(8.1 \times 10^{1}\right)\) (b) \(\left(8.32 \times 10^{-5}\right) \times\left(0.53 \times 10^{4}\right)\) (c) \(\frac{6.02 \times 10^{23}}{3}\), where the 3 is an exact number (d) \(\left(3.960 \times 10^{3}\right)-\left(4.62 \times 10^{2}\right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.