Chapter 4: Problem 106
What is the octet rule, and what is the justification behind it?
Chapter 4: Problem 106
What is the octet rule, and what is the justification behind it?
All the tools & learning materials you need for study success - in one app.
Get started for freeRegarding primary quantum number \(n\), which representative elements have valence electrons with an \(n\) value that is three times the \(n\) value of lithium's valence electrons? What period are they in?
Electromagnetic radiation emitted by magnesium has a wavelength of \(285.2 \mathrm{~nm}\). (a) Is this radiation visible to the eye? (b) What is the energy of this radiation?
Identify the period 2 element that is described by the ionization data below. \(\mathrm{M}(\mathrm{g}) \rightarrow \mathrm{M}^{+} 1 \mathrm{e}^{-} \quad \mathrm{IE}(1)=1.40 \times 10^{3} \mathrm{~J} / \mathrm{mol}\) \(\mathrm{M}^{+}(\mathrm{g}) \rightarrow \mathrm{M}^{2+} 1 \mathrm{e}^{-} \mathrm{IE}(2)=2.86 \times 10^{3} \mathrm{~J} / \mathrm{mol}\) \(\mathrm{M}^{2+}(\mathrm{g}) \rightarrow \mathrm{M}^{3+} 1 \mathrm{e}^{-} \mathrm{IE}(3)=4.58 \times 10^{3} \mathrm{~J} / \mathrm{mol}\) \(\mathrm{M}^{3+}(\mathrm{g}) \rightarrow \mathrm{M}^{4+} 1 \mathrm{e}^{-} \mathrm{IE}(4)=7.48 \times 10^{3} \mathrm{~J} / \mathrm{mol}\) \(\mathrm{M}^{4+}(\mathrm{g}) \rightarrow \mathrm{M}^{5+} 1 \mathrm{e}^{-} \mathrm{IE}(5)=9.44 \times 10^{3} \mathrm{~J} / \mathrm{mol}\) \(\mathrm{M}^{5+}(\mathrm{g}) \rightarrow \mathrm{M}^{6+} 1 \mathrm{e}^{-} \mathrm{IE}(6)=5.33 \times 10^{4} \mathrm{~J} / \mathrm{mol}\) \(\mathrm{M}^{6+}(\mathrm{g}) \rightarrow \mathrm{M}^{7+} 1 \mathrm{e}^{-} \mathrm{IE}(7)=6.44 \times 10^{4} \mathrm{~J} / \mathrm{mol}\)
According to Bohr, what is so special about the valence shell of an atom?
According to Bohr's model, energy must be put into an atom to move an electron from a low-energy shell to a higher-energy shell. How do you calculate the amount of energy needed for the move?
What do you think about this solution?
We value your feedback to improve our textbook solutions.