Chapter 1: Problem 3
Evaluate the commutators (a) \([x, y]\) (b) \(\left[p_{x}, p_{y}\right]\) (c) \(\left[x, p_{x}\right]\) (d) \(\left[x^{2}, p_{x}\right]\) (e) \(\left[x^{n}, p_{x}\right]\)
Chapter 1: Problem 3
Evaluate the commutators (a) \([x, y]\) (b) \(\left[p_{x}, p_{y}\right]\) (c) \(\left[x, p_{x}\right]\) (d) \(\left[x^{2}, p_{x}\right]\) (e) \(\left[x^{n}, p_{x}\right]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the operator for position \(x\) if the operator for momentum \(p\) is taken to be \((\hbar / 2 m)^{1 / 2}(A+B),\) with \([A, B]=1\) and all other commutators zero. Hint. Write \(x=a A+b B\) and find one set of solutions for \(a\) and \(b\)
Are the linear combinations \(2 x-y-z, 2 y-x-z\) \(2 z-x-y\) linearly independent?
Confirm that the operators (a) \(T=-\left(\hbar^{2} / 2 m\right)\left(d^{2} / d x^{2}\right)\) and (b) \(l_{z}=(\hbar / \mathrm{i})(\mathrm{d} / \mathrm{d} \varphi)\) are Hermitian. Hint. Consider the integrals \(\int_{0}^{L} \psi_{a}^{*} T \psi_{b} \mathrm{d} x\) and \(\int_{0}^{2 \pi} \psi_{a}^{*} l_{z} \psi_{b} \mathrm{d} \varphi\) and integrate by parts.
Evaluate the commutators (a) \(\left[H, p_{x}\right]\) and (b) \([H, x]\) where \(H=p_{x}^{2} / 2 m+V(x) .\) Choose (i) \(V(x)=V,\) a constant, (ii) \(V(x)=\frac{1}{2} k_{t} x^{2},\) (iii) \(V(x) \rightarrow V(r)=e^{2} / 4 \pi \varepsilon_{0} r .\) Hint. For part (b), case (iii), use \(\left(\partial r^{-1} / \partial x\right)=-x / r^{3}\)
The ground-state wavefunction of a hydrogen atom has the form \(\psi(r)=N \mathrm{e}^{-b r}, b\) being a collection of fundamental constants with the magnitude \(1 / a_{0},\) with \(a_{0}=53 \mathrm{pm}\) Normalize this spherically symmetrical function. Hint. The volume element is \(\mathrm{d} \tau=\sin \theta \mathrm{d} \theta \mathrm{d} \varphi r^{2} \mathrm{d} r,\) with \(0 \leq \theta \leq \pi\) \(0 \leq \varphi \leq 2 \pi,\) and \(0 \leq r<\infty,\) 'Normalize' always means 'normalize to 1 ' in this text.
What do you think about this solution?
We value your feedback to improve our textbook solutions.