Chapter 10: Problem 8
The \(J+1 \leftarrow J\) rotational transitions of \(^{16} \mathrm{O}^{12} \mathrm{C}^{32} \mathrm{S}\) and \(^{16} \mathrm{O}^{12} \mathrm{C}^{34} \mathrm{S}\) occur at the following frequencies \((v / \mathrm{GHz})\) $$\begin{array}{lllll} \hline J & 1 & 2 & 3 & 4 \\ \hline^{16} \mathrm{O}^{12} \mathrm{C}^{32} \mathrm{S} & 24.32592 & 36.48882 & 48.65164 & 60.81408 \\ ^{16} \mathrm{O}^{12} \mathrm{C}^{34} \mathrm{S} & 23.73223 & & 47.46240 & \\ \hline \end{array}$$ Find (a) the rotational constants, (b) the moments of inertia, and (c) the CS and CO bond lengths. Hint. Begin by finding expressions for the moment of inertia \(I\) through \(I=m_{\Lambda} R_{A}^{2}+m_{B} R_{B}^{2}+m_{C} R_{C}^{2},\) where \(R_{X}\) is the distance of atom \(\mathrm{X}\) from the centre of mass. The easiest procedure is to use the result established in Exercise \(10.6,\) which leads to \(I=\left(m_{\mathrm{A}} m_{\mathrm{C}} / m\right)\left(R_{\mathrm{AB}}+R_{\mathrm{BC}}\right)^{2}+\left(m_{\mathrm{B}} / m\right)\left(m_{\mathrm{A}} R_{\mathrm{AB}}^{2}+m_{\mathrm{C}} R_{\mathrm{BC}}^{2}\right)\) The lengths \(R_{\text {AB }}\) and \(R_{\mathrm{BC}}\) may be found only if two values of \(I\) are known. Assume the bond lengths are the same in isotopomeric molecules.