The Bixon-Jortner approach to radiationless transitions was sketched in a very
simplified form in Example \(11.4 .\) The following is a slightly more elaborate
version. Let \(\psi,\) an eigenstate of the system hamiltonian
\(H^{(\mathrm{sys})}\) with eigenvalue \(E,\) be the state populated initially,
and let \(\varphi_{n}\) an eigenstate of the bath hamiltonian \(H^{( \text {bath)
} }\) with eigenvalue \(E_{n},\) be a state of the bath. Let \(\Psi=a
\psi+\Sigma_{n} b_{n} \varphi_{n}\) be an eigenstate of the true hamiltonian
\(H\) with energy \(\mathcal{E}\). Let \(\left\langle\psi |
\varphi_{n}\right\rangle=0\) and \(H^{\prime}=H-H^{(\mathrm{sys})}-H^{(\text
{bath })}\) have constant matrix
elements \(\left\langle\varphi_{n}\left|H^{\prime}\right| \psi\right\rangle=V\)
for all \(n .\) Show that \(H \Psi=\mathcal{E} \Psi\) leads to \(V
a+\left(E_{n}-\mathcal{E}\right) b_{n}=0\) and \((E-\mathcal{E}) a+V \Sigma_{n}
b_{n}=0 .\) Hence find an expression relating \(a\) and \(b_{n^{*}}\) Letting
\(\mathcal{E}-E_{n}=(\gamma-n) \varepsilon\) and using
\(\Sigma_{n=-\infty}^{\infty} 1 /(\gamma-n)=-\pi \cot \pi \gamma\) and \(\rho=1 /
\varepsilon,\) show that \(E-\mathcal{E}-\pi \rho V^{2} \cot \pi \gamma=0,\) an
equation for \(\mathcal{E} .\) Go on to show on the basis that \(a^{2}+\Sigma_{n}
b_{n}^{2}=1,\) that \(a^{2}=V^{2} /\left\\{(E-\mathcal{E})^{2}+V^{2}\right.\)
\(\left.+\left(\pi V^{2} \rho\right)^{2}\right\\}\)