Chapter 13: Problem 11
Show that the energy of dipolar interaction of two electron spin magnetic moments may be expressed as \(S \cdot D \cdot S,\) where \(S=s_{1}+s_{2}\) and \(S \cdot D \cdot S=\sum_{i, j} S_{i} D_{i j} S_{j}\) with \(i, j=x, y,\) and \(z .\) Hint. The energy is proportional to \(s_{1} \cdot s_{2}-3 s_{1} \cdot\left(r r / r^{2}\right) \cdot s_{2} .\) Expand this expression in terms of its Cartesian components and employ relations such \(\operatorname{as} s_{1 x}^{2}=\frac{1}{4} \hbar^{2}, S_{x}^{2}=2 s_{1 x} s_{2 x}+\frac{1}{2} \hbar^{2},\) etc.