Calculate the values of (a) \(\langle x\rangle\)
(b) \(\left\langle x^{2}\right\rangle\)
\(,(\mathrm{c})\left\langle p_{x}\right\rangle,(\mathrm{d})\left\langle
p_{x}^{2}\right\rangle\)
for a harmonic oscillator in its ground state by evaluation of the appropriate
integrals (as in Problems \(2.13-2.15\) ). Examine the value of \(\Delta x \Delta
p_{x}\) in the light of the uncertainty principle. Hint. Use the integrals
\\[
\begin{array}{l}
\int_{-\infty}^{\infty} \mathrm{e}^{-\alpha x^{2}} \mathrm{d}
x=\left(\frac{\pi}{\alpha}\right)^{1 / 2} \\
\int_{0}^{\infty} x \mathrm{e}^{-\alpha x^{2}} \mathrm{d} x=\frac{1}{2 \alpha}
\\\
\int_{-\infty}^{\infty} x^{2} \mathrm{e}^{-\alpha x^{2}} \mathrm{d}
x=\frac{1}{2}\left(\frac{\pi}{\alpha^{3}}\right)^{1 / 2}
\end{array}
\\]