Chapter 2: Problem 29
Calculate the values of (a) \(\langle x\rangle\) (b) \(\left\langle x^{2}\right\rangle\) \(,(\mathrm{c})\left\langle p_{x}\right\rangle,(\mathrm{d})\left\langle p_{x}^{2}\right\rangle\) for a harmonic oscillator in its ground state by evaluation of the appropriate integrals (as in Problems \(2.13-2.15\) ). Examine the value of \(\Delta x \Delta p_{x}\) in the light of the uncertainty principle. Hint. Use the integrals \\[ \begin{array}{l} \int_{-\infty}^{\infty} \mathrm{e}^{-\alpha x^{2}} \mathrm{d} x=\left(\frac{\pi}{\alpha}\right)^{1 / 2} \\ \int_{0}^{\infty} x \mathrm{e}^{-\alpha x^{2}} \mathrm{d} x=\frac{1}{2 \alpha} \\\ \int_{-\infty}^{\infty} x^{2} \mathrm{e}^{-\alpha x^{2}} \mathrm{d} x=\frac{1}{2}\left(\frac{\pi}{\alpha^{3}}\right)^{1 / 2} \end{array} \\]