(a) Construct a wavepacket \(\Psi=\mathrm{N}
\sum_{m_{\mathrm{r}}=0}^{\infty}\left(1 / m_{l} !\right)
\mathrm{e}^{\mathrm{in} \varphi}\) and
normalize it to unity, Sketch the form of \(|\Psi|^{2}\) for \(0 \leq \varphi
\leq 2 \pi\)
(b) Calculate \(\langle\varphi\rangle,\langle\sin \varphi\rangle,\) and
\(\left\langle l_{z}\right\rangle\)
(c) Why is \(\left\langle l_{z}\right\rangle \leq \hbar ?\)
Hint. Draw on a variety of pieces of information, including
\(\sum_{n=0}^{\infty} x^{n} / n !=\mathrm{e}^{x}\) and the following integrals:
$$\int_{0}^{2 \pi} \mathrm{e}^{\operatorname{scos} \phi} \mathrm{d} \varphi=2
\pi I_{0}(z) \int_{0}^{2 \pi} \cos \varphi \mathrm{e}^{\sec \varphi}
\mathrm{d} \varphi=2 \pi I_{1}(z)$$ with \(I_{0}(2)=2.280 \ldots,
I_{1}(2)=1.591 \ldots ;\) the \(I(z)\) are modificd Bessel functions.